Coulomb branches of star-shaped quivers

被引:0
|
作者
Tudor Dimofte
Niklas Garner
机构
[1] UC Davis,Department of Mathematics and Center for Quantum Mathematics and Physics (QMAP)
[2] UC Davis,Department of Physics and QMAP
关键词
Supersymmetric Gauge Theory; Topological Field Theories; Differential and Algebraic Geometry;
D O I
暂无
中图分类号
学科分类号
摘要
We study the Coulomb branches of 3d N=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=4 $$\end{document} “star-shaped” quiver gauge theories and their deformation quantizations, by applying algebraic techniques that have been developed in the mathematics and physics literature over the last few years. The algebraic techniques supply an abelianization map, which embeds the Coulomb-branch chiral ring into a vastly simpler abelian algebra A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{A} $$\end{document}. Relations among chiral-ring operators, and their deformation quantization, are canonically induced from the embedding into A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{A} $$\end{document}. In the case of star-shaped quivers — whose Coulomb branches are related to Higgs branches of 4d N=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=2 $$\end{document} theories of Class S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{S} $$\end{document} — this allows us to systematically verify known relations, to generalize them, and to quantize them. In the quantized setting, we find several new families of relations.
引用
收藏
相关论文
共 50 条
  • [41] Several remarks on star-shaped sets
    Bobylev, NA
    MATHEMATICAL NOTES, 1999, 65 (3-4) : 430 - 435
  • [42] VISCOELASTIC PROPERTIES OF STAR-SHAPED POLYMERS
    PEARSON, DS
    HELFAND, E
    MACROMOLECULES, 1984, 17 (04) : 888 - 895
  • [43] Electrodeposition of star-shaped gold crystallites
    Bozzini, B
    Fanigliulo, A
    Serra, M
    JOURNAL OF CRYSTAL GROWTH, 2001, 231 (04) : 589 - 598
  • [44] Pillar star-shaped grounding system
    Rancic, Predrag D.
    Cvetkovic, Nenad N.
    PRZEGLAD ELEKTROTECHNICZNY, 2010, 86 (05): : 100 - 104
  • [45] THE CRITICAL LATTICES OF A STAR-SHAPED OCTAGON
    CLARKE, LE
    ACTA MATHEMATICA, 1958, 99 (1-2) : 1 - 32
  • [46] VISCOELASTIC PROPERTIES OF STAR-SHAPED POLYSTYRENES
    ONOGI, S
    MASUDA, T
    OHTA, Y
    JOURNAL OF RHEOLOGY, 1980, 24 (06) : 944 - 944
  • [47] PREPARATION AND CHARACTERIZATION OF A STAR-SHAPED POLYMER
    FIJUMOTO, T
    TANI, S
    TAKANO, K
    OGAWA, M
    NAGASAWA, M
    MACROMOLECULES, 1978, 11 (04) : 673 - 677
  • [48] Upward Star-Shaped Polyhedral Graphs
    Hong, Seok-Hee
    Nagamochi, Hiroshi
    ALGORITHMS AND COMPUTATION, PROCEEDINGS, 2009, 5878 : 913 - +
  • [49] STAR-SHAPED SET INVERSION FRACTALS
    Gdawiec, Krzysztof
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2014, 22 (04)
  • [50] Estimation of a star-shaped distribution function
    El Barmi, Hammou
    Malla, Ganesh
    Mukerjee, Hari
    JOURNAL OF NONPARAMETRIC STATISTICS, 2017, 29 (01) : 22 - 39