Coulomb branches of star-shaped quivers

被引:0
|
作者
Tudor Dimofte
Niklas Garner
机构
[1] UC Davis,Department of Mathematics and Center for Quantum Mathematics and Physics (QMAP)
[2] UC Davis,Department of Physics and QMAP
关键词
Supersymmetric Gauge Theory; Topological Field Theories; Differential and Algebraic Geometry;
D O I
暂无
中图分类号
学科分类号
摘要
We study the Coulomb branches of 3d N=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=4 $$\end{document} “star-shaped” quiver gauge theories and their deformation quantizations, by applying algebraic techniques that have been developed in the mathematics and physics literature over the last few years. The algebraic techniques supply an abelianization map, which embeds the Coulomb-branch chiral ring into a vastly simpler abelian algebra A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{A} $$\end{document}. Relations among chiral-ring operators, and their deformation quantization, are canonically induced from the embedding into A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{A} $$\end{document}. In the case of star-shaped quivers — whose Coulomb branches are related to Higgs branches of 4d N=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=2 $$\end{document} theories of Class S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{S} $$\end{document} — this allows us to systematically verify known relations, to generalize them, and to quantize them. In the quantized setting, we find several new families of relations.
引用
收藏
相关论文
共 50 条
  • [31] Star-shaped sets in normed spaces
    Boltyanski, V
    Martini, H
    Soltan, PS
    DISCRETE & COMPUTATIONAL GEOMETRY, 1996, 15 (01) : 63 - 71
  • [32] REGULAR STAR-SHAPED POLYDIMETHYLSILOXANE POLYMERS
    WILCZEK, L
    RUBINSZTAJN, S
    FORTUNIAK, W
    CHOJNOWSKI, J
    TVERDOCHLEBOVA, II
    VOLKOVA, RV
    BULLETIN OF THE POLISH ACADEMY OF SCIENCES-CHEMISTRY, 1989, 37 (1-2): : 91 - 97
  • [33] Invariant valuations on star-shaped sets
    Klain, DA
    ADVANCES IN MATHEMATICS, 1997, 125 (01) : 95 - 113
  • [34] Rigid star-shaped adamantane multipodes
    Heitz, W
    Meckel-Jonas, C
    Roth, MD
    Wendorff, JH
    ACTA POLYMERICA, 1998, 49 (01) : 35 - 44
  • [35] On weakly convex star-shaped polyhedra
    Schlenker, Jean-Marc
    DISCRETE MATHEMATICS, 2009, 309 (20) : 6139 - 6145
  • [36] STAR-SHAPED COAXIAL TRANSMISSION LINES
    ARORA, RK
    DASS, RL
    PROCEEDINGS OF THE IEEE, 1969, 57 (05) : 832 - &
  • [37] MAXIMAL LN STAR-SHAPED SETS
    TOPALE, OI
    MATHEMATICAL NOTES, 1982, 32 (1-2) : 537 - 539
  • [38] ON THE GEOMETRY OF STAR-SHAPED CURVES IN Rn
    Horocholyn, Stefan A.
    KYUSHU JOURNAL OF MATHEMATICS, 2019, 73 (01) : 123 - 144
  • [39] Star-shaped oscillations of Leidenfrost drops
    Ma, Xiaolei
    Lietor-Santos, Juan-Jose
    Burton, Justin C.
    PHYSICAL REVIEW FLUIDS, 2017, 2 (03):
  • [40] Wetting of a Multiarm Star-Shaped Molecule
    Glynos, Emmanouil
    Frieberg, Bradley
    Green, Peter F.
    PHYSICAL REVIEW LETTERS, 2011, 107 (11)