Coulomb branches of star-shaped quivers

被引:0
|
作者
Tudor Dimofte
Niklas Garner
机构
[1] UC Davis,Department of Mathematics and Center for Quantum Mathematics and Physics (QMAP)
[2] UC Davis,Department of Physics and QMAP
关键词
Supersymmetric Gauge Theory; Topological Field Theories; Differential and Algebraic Geometry;
D O I
暂无
中图分类号
学科分类号
摘要
We study the Coulomb branches of 3d N=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=4 $$\end{document} “star-shaped” quiver gauge theories and their deformation quantizations, by applying algebraic techniques that have been developed in the mathematics and physics literature over the last few years. The algebraic techniques supply an abelianization map, which embeds the Coulomb-branch chiral ring into a vastly simpler abelian algebra A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{A} $$\end{document}. Relations among chiral-ring operators, and their deformation quantization, are canonically induced from the embedding into A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{A} $$\end{document}. In the case of star-shaped quivers — whose Coulomb branches are related to Higgs branches of 4d N=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=2 $$\end{document} theories of Class S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{S} $$\end{document} — this allows us to systematically verify known relations, to generalize them, and to quantize them. In the quantized setting, we find several new families of relations.
引用
收藏
相关论文
共 50 条
  • [21] On the estimation of a star-shaped set
    Baíllo, A
    Cuevas, A
    ADVANCES IN APPLIED PROBABILITY, 2001, 33 (04) : 717 - 726
  • [22] THE HOYSALA STAR-SHAPED PLAN
    Berkson, Carmel
    MARG-A MAGAZINE OF THE ARTS, 2021, 73 (2-3): : 104 - 105
  • [23] Star-shaped acceptability indexes
    Righi, Marcelo Brutti
    INSURANCE MATHEMATICS & ECONOMICS, 2024, 117 : 170 - 181
  • [24] Star-shaped fluorescent polypeptides
    Klok, HA
    Hernández, JR
    Becker, S
    Müllen, K
    JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2001, 39 (10) : 1572 - 1583
  • [25] Star-shaped distributions and their generalizations
    Kamiya, Hidehiko
    Takemura, Akimichi
    Kuriki, Satoshi
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2008, 138 (11) : 3429 - 3447
  • [26] Star-shaped stilbenoid phthalocyanines
    Kimura, M
    Narikawa, H
    Ohta, K
    Hanabusa, K
    Shirai, H
    Kobayashi, N
    CHEMISTRY OF MATERIALS, 2002, 14 (06) : 2711 - 2717
  • [27] STAR-SHAPED SETS AND BEST APPROXIMATION
    DEBLASI, FS
    MYJAK, J
    PAPINI, PL
    ARCHIV DER MATHEMATIK, 1991, 56 (01) : 41 - 48
  • [28] EXTREMAL STRUCTURE OF STAR-SHAPED SETS
    TIDMORE, FE
    PACIFIC JOURNAL OF MATHEMATICS, 1969, 29 (02) : 461 - &
  • [29] Homothetic preferences on star-shaped sets
    Maccheroni F.
    Decisions in Economics and Finance, 2001, 24 (1) : 41 - 47
  • [30] Differential diagnosis: star-shaped shadowing
    不详
    GYNAKOLOGE, 1999, 32 (08): : 656 - 659