Coulomb branches of star-shaped quivers

被引:0
|
作者
Tudor Dimofte
Niklas Garner
机构
[1] UC Davis,Department of Mathematics and Center for Quantum Mathematics and Physics (QMAP)
[2] UC Davis,Department of Physics and QMAP
关键词
Supersymmetric Gauge Theory; Topological Field Theories; Differential and Algebraic Geometry;
D O I
暂无
中图分类号
学科分类号
摘要
We study the Coulomb branches of 3d N=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=4 $$\end{document} “star-shaped” quiver gauge theories and their deformation quantizations, by applying algebraic techniques that have been developed in the mathematics and physics literature over the last few years. The algebraic techniques supply an abelianization map, which embeds the Coulomb-branch chiral ring into a vastly simpler abelian algebra A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{A} $$\end{document}. Relations among chiral-ring operators, and their deformation quantization, are canonically induced from the embedding into A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{A} $$\end{document}. In the case of star-shaped quivers — whose Coulomb branches are related to Higgs branches of 4d N=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=2 $$\end{document} theories of Class S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{S} $$\end{document} — this allows us to systematically verify known relations, to generalize them, and to quantize them. In the quantized setting, we find several new families of relations.
引用
收藏
相关论文
共 50 条
  • [11] Star-Shaped Conjugated Systems
    Detert, Heiner
    Lehmann, Matthias
    Meier, Herbert
    MATERIALS, 2010, 3 (05) : 3218 - 3330
  • [12] Estimation of Star-Shaped Distributions
    Liebscher, Eckhard
    Richter, Wolf-Dieter
    RISKS, 2016, 4 (04)
  • [13] Star-shaped and hyperbranched polyesters
    Kricheldorf, HR
    MACROMOLECULAR SYMPOSIA, 1997, 122 : 15 - 23
  • [14] Star-Shaped Polylactic Acid
    Luo Yufen
    Wang Zhaoyang
    Song Xiumei
    Mao Zhengzhou
    PROGRESS IN CHEMISTRY, 2008, 20 (10) : 1578 - 1587
  • [15] LIMITS OF STAR-SHAPED SETS
    BEER, G
    KLEE, V
    ARCHIV DER MATHEMATIK, 1987, 48 (03) : 241 - 249
  • [16] Electropolymerization of star-shaped oligothiophenes
    Chen, Hsuan-Yin
    Tsai, Jun-Yun
    Yang, Jye-Shane
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 245
  • [17] Modelling with star-shaped distributions
    Liebscher, Eckhard
    Richter, Wolf-Dieter
    DEPENDENCE MODELING, 2020, 8 (01): : 45 - 69
  • [18] Multibranched star-shaped polyethers
    Lapienis, G
    Penczek, S
    MACROMOLECULAR SYMPOSIA, 2003, 195 : 317 - 327
  • [19] Star-shaped separability with applications
    Rubinov, A. M.
    Sharikov, E. V.
    JOURNAL OF CONVEX ANALYSIS, 2006, 13 (3-4) : 849 - 860
  • [20] A CHARACTERIZATION OF STAR-SHAPED SETS
    SMITH, CR
    AMERICAN MATHEMATICAL MONTHLY, 1968, 75 (04): : 386 - &