Secondary dequantization in algebraic and tropical geometry

被引:0
|
作者
V. P. Maslov
机构
[1] Moscow State University,
来源
Mathematical Notes | 2007年 / 82卷
关键词
secondary dequantization; algebraic geometry; tropical geometry; idempotent analysis; semiring; (; )-algebra; logarithmic coordinates;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:860 / 862
页数:2
相关论文
共 50 条
  • [1] Secondary dequantization in algebraic and tropical geometry
    Maslov, V. P.
    MATHEMATICAL NOTES, 2007, 82 (5-6) : 860 - 862
  • [2] Tropical algebraic geometry
    Odagiri, Shinsuke
    HOKKAIDO MATHEMATICAL JOURNAL, 2009, 38 (04) : 771 - 795
  • [3] Algebraic, tropical, and fuzzy geometry
    Dress A.
    Wenzel W.
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2011, 52 (2): : 431 - 461
  • [4] THE FUNDAMENTAL THEOREM OF TROPICAL DIFFERENTIAL ALGEBRAIC GEOMETRY
    Aroca, Fuensanta
    Garay, Cristhian
    Toghani, Zeinab
    PACIFIC JOURNAL OF MATHEMATICS, 2016, 283 (02) : 257 - 270
  • [5] Maslov dequantization, idempotent and tropical mathematics: A brief introduction
    Litvinov G.L.
    Journal of Mathematical Sciences, 2007, 140 (3) : 426 - 444
  • [6] The Maslov dequantization, idempotent and tropical mathematics: a very brief introduction
    Litvinov, GL
    IDEMPOTENT MATHEMATICS AND MATHEMATICAL PHYSICS, 2005, 377 : 1 - 17
  • [7] An invitation to tropical geometry
    Feichtner, Eva Maria
    EVOLUTIONARY AND INSTITUTIONAL ECONOMICS REVIEW, 2015, 12 (01) : 169 - 176
  • [8] An invitation to tropical geometry
    Eva Maria Feichtner
    Evolutionary and Institutional Economics Review, 2015, 12 (1) : 169 - 176
  • [9] Geometry of tropical extensions of hyperfields
    Maxwell, James
    Smith, Ben
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2024,
  • [10] Tropical Geometry and Machine Learning
    Maragos, Petros
    Charisopoulos, Vasileios
    Theodosis, Emmanouil
    PROCEEDINGS OF THE IEEE, 2021, 109 (05) : 728 - 755