Towards Off-the-Grid Algorithms for Total Variation Regularized Inverse Problems

被引:0
|
作者
Yohann De Castro
Vincent Duval
Romain Petit
机构
[1] École Centrale de Lyon,Institut Camille Jordan, CNRS UMR 5208
[2] Université Paris-Dauphine,CEREMADE, CNRS, UMR 7534
[3] PSL University,undefined
[4] INRIA-Paris,undefined
[5] MOKAPLAN,undefined
关键词
Off-the-grid imaging; Inverse problems; Total variation;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce an algorithm to solve linear inverse problems regularized with the total (gradient) variation in a gridless manner. Contrary to most existing methods, that produce an approximate solution which is piecewise constant on a fixed mesh, our approach exploits the structure of the solutions and consists in iteratively constructing a linear combination of indicator functions of simple polygons.
引用
收藏
页码:53 / 81
页数:28
相关论文
共 50 条
  • [31] Comparative studies of total-variation-regularized sparse reconstruction algorithms in projection tomography
    Xie, Hui
    Wang, Huiyuan
    Wang, Lin
    Wang, Nan
    Liang, Jimin
    Zhan, Yonghua
    Chen, Xueli
    AIP ADVANCES, 2019, 9 (08):
  • [32] Error estimates for total-variation regularized minimization problems with singular dual solutions
    Sören Bartels
    Alex Kaltenbach
    Numerische Mathematik, 2022, 152 : 881 - 906
  • [33] An Inexact Alternating Directions Algorithm for Constrained Total Variation Regularized Compressive Sensing Problems
    Yun-Hai Xiao
    Hui-Na Song
    Journal of Mathematical Imaging and Vision, 2012, 44 : 114 - 127
  • [34] An Inexact Alternating Directions Algorithm for Constrained Total Variation Regularized Compressive Sensing Problems
    Xiao, Yun-Hai
    Song, Hui-Na
    JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2012, 44 (02) : 114 - 127
  • [35] Error estimates for total-variation regularized minimization problems with singular dual solutions
    Bartels, Soeren
    Kaltenbach, Alex
    NUMERISCHE MATHEMATIK, 2022, 152 (04) : 881 - 906
  • [36] Singular solutions, graded meshes,and adaptivity for total-variation regularized minimization problems
    Bartels, Soeren
    Tovey, Robert
    Wassmer, Friedrich
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2022, 56 (06) : 1871 - 1888
  • [37] Regularized sparse-grid geometric sampling for uncertainty analysis in non-linear inverse problems
    Azevedo, Leonardo
    Tompkins, Michael J.
    Mukerji, Tapan
    GEOPHYSICAL PROSPECTING, 2016, 64 (02) : 320 - 334
  • [38] A function space framework for structural total variation regularization with applications in inverse problems
    Hintermuller, Michael
    Holler, Martin
    Papafitsoros, Kostas
    INVERSE PROBLEMS, 2018, 34 (06)
  • [39] Level set and total variation regularization for elliptic inverse problems with discontinuous coefficients
    Chan, TF
    Tai, XC
    JOURNAL OF COMPUTATIONAL PHYSICS, 2004, 193 (01) : 40 - 66
  • [40] Runge-Kutta type total variation regularization for nonlinear inverse problems
    Li, Li
    Liu, Wanyu
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 263 : 103 - 114