We prove that if the bicanonical map of a minimal surface of general type S with pg = q = 1 and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${K_{S}^2=8}$$\end{document} is nonbirational, then it is a double cover onto a rational surface. An application of this theorem is the complete classification of minimal surfaces of general type with \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${p_{g}=q=1, K_{S}^2=8}$$\end{document} and nonbirational bicanonical map.