Quasi-periodic Solutions of Completely Resonant Wave Equations with Quasi-periodically forced Vibrations

被引:0
作者
Yansheng Ma
Wenqi Lou
机构
[1] Jilin University,Department of Mathematics
来源
Acta Applicandae Mathematicae | 2010年 / 112卷
关键词
Nonlinear wave equation; Quasi-periodic solutions; Small divisors; Lyapunov-Schmidt reduction; Linking Theorem;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we provide the existence of quasi-periodic solutions with two frequencies for a class of completely resonant nonlinear wave equations with quasi-periodically forced vibrations under the spatial periodic boundary conditions. We consider the frequencies vector (ω1,ω2) near the linear system. The proofs are based on the Variational Lyapunov-Schmidt reduction and Linking Theorem.
引用
收藏
页码:309 / 322
页数:13
相关论文
共 16 条
[1]  
Lidski B.V.(1988)Periodic solutions of the equation Funct. Anal. Appl. 22 332-333
[2]  
Shuĺman E.I.(2003)− Commun. Math. Phys. 243 315-328
[3]  
Berti M.(2004)+ Nonlin. Anal. 56 1011-1046
[4]  
Bolle P.(2006)=0 Duke Math. J. 134 359-419
[5]  
Berti M.(2005)Periodic solutions of nonlinear wave equations with general nonlinearities Discrete Contin. Dyn. Syst. 13 541-552
[6]  
Bolle P.(1961)Multiplicity of periodic solutions of nonlinear wave equations Proc. Natl. Acad. Sci. USA 47 1824-1831
[7]  
Berti M.(1967)Cantor families of periodic solutions for completely resonant nonlinear wave equations Commun. Pure Appl. Math. 20 145-205
[8]  
Bolle P.(1971)Quasi-periodic solutions for completely resonant non-linear wave equations in 1D and 2D Manuscripta Math. 5 165-194
[9]  
Procesi M.(2005)A new technique for the construction of solutions of nonlinear differential equations Commun. Partial Differ. Equ. 35 959-985
[10]  
Moser J.(1993)Periodic solutions of nonlinear hyperbolic partial differential equations Commun. Pure Appl. Math. 46 1409-1498