On Numerical Approaches for Solving an Inverse Cauchy Stokes Problem

被引:0
|
作者
Hamid Ouaissa
Abdelkrim Chakib
Abdeljalil Nachaoui
Mourad Nachaoui
机构
[1] Université Sultan Moulay Slimane,Laboratoire de Mathématiques et Applications, Faculté des Sciences et Techniques
[2] Laboratoire de Mathématiques Jean Leray UMR6629 CNRS / Université de Nantes 2 rue de la Houssinière,undefined
来源
Applied Mathematics & Optimization | 2022年 / 85卷
关键词
Inverse problems; Stokes equation; Tikhonov regularization; Numerical approximation; Finite element method; 65N21; 65M60; 65M30; 65M32;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we are interested in the study of an inverse Cauchy problem governed by Stokes equation. It consists in determining the fluid velocity and the flux over a part of the boundary, by introducing given measurements on the remaining part. As it’s known, it is one of highly ill-posed problems in the Hadamard’s sense (Phys Today 6:18, 1953), it is then an interesting challenge to carry out a numerical procedure for approximating their solutions, in particular, in the presence of noisy data. To solve this problem, we propose here a regularizing approach based on a Tikhonov regularization method. We show the existence of the regularization optimization problem and prove the convergence of subsequence of optimal solutions of Tikhonov regularization formulations to the solution of the Cauchy problem, when the noise level goes to zero. Then, we suggest the numerical approximation of this problem using the finite elements method of P1Bubble/P1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{1Bubble}/P_1$$\end{document} type’s, we show the existence of the discrete optimal regularized solution without noise and prove the convergence of subsequence of discrete optimal solutions to the solution of the continuous optimization problem. Finally, we provide some numerical results showing the accuracy and the efficiency of the proposed approach.
引用
收藏
相关论文
共 50 条
  • [31] Fading regularization MFS algorithm for the Cauchy problem associated with the two-dimensional Stokes equations
    Zayeni, Hatem
    Ben Abda, Amel
    Delvare, Franck
    Khayat, Faten
    NUMERICAL ALGORITHMS, 2023, 94 (03) : 1461 - 1488
  • [32] Numerical solution for an inverse variational problem
    Garralda-Guillem, A., I
    Montiel Lopez, P.
    OPTIMIZATION AND ENGINEERING, 2021, 22 (04) : 2537 - 2552
  • [33] Numerical solution of an inverse filtration problem
    Vabishchevich, P. N.
    Vasil'ev, V. I.
    Vasil'eva, M. V.
    Nikiforov, D. Ya.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2016, 37 (06) : 777 - 786
  • [34] Numerical approximation of the general compressible Stokes problem
    Fettah, A.
    Gallouet, T.
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2013, 33 (03) : 922 - 951
  • [35] Numerical solution for an inverse variational problem
    A. I. Garralda-Guillem
    P. Montiel López
    Optimization and Engineering, 2021, 22 : 2537 - 2552
  • [36] Numerical algorithms for solving the anomalous diffusion inverse problems
    Ivaschenko, DS
    Korus 2004, Vol 2, Proceedings, 2004, : 137 - 139
  • [37] Solving the ultrasound inverse scattering problem of inhomogeneous media using different approaches of total least squares algorithms
    Carevic, Anita
    Yun, Xingzhao
    Lee, Geunseop
    Slapnicar, Ivan
    Abdou, Ali
    Barlow, Jesse
    Almekkawy, Mohamed
    MEDICAL IMAGING 2018: ULTRASONIC IMAGING AND TOMOGRAPHY, 2018, 10580
  • [38] Solving Ultrasound Tomography's Inverse Problem: Automating Regularization Parameter Selection
    Carevic, Anita
    Slapnicar, Ivan
    Almekkawy, Mohamed
    IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2022, 69 (08) : 2447 - 2461
  • [39] Stability estimates for the inverse boundary value problem by partial Cauchy data
    Lai, Ru-Yu
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2015, 38 (08) : 1568 - 1581
  • [40] THE "EXTERIOR APPROACH" TO SOLVE THE INVERSE OBSTACLE PROBLEM FOR THE STOKES SYSTEM
    Bourgeois, Laurent
    Darde, Jeremi
    INVERSE PROBLEMS AND IMAGING, 2014, 8 (01) : 23 - 51