On Numerical Approaches for Solving an Inverse Cauchy Stokes Problem

被引:0
|
作者
Hamid Ouaissa
Abdelkrim Chakib
Abdeljalil Nachaoui
Mourad Nachaoui
机构
[1] Université Sultan Moulay Slimane,Laboratoire de Mathématiques et Applications, Faculté des Sciences et Techniques
[2] Laboratoire de Mathématiques Jean Leray UMR6629 CNRS / Université de Nantes 2 rue de la Houssinière,undefined
来源
关键词
Inverse problems; Stokes equation; Tikhonov regularization; Numerical approximation; Finite element method; 65N21; 65M60; 65M30; 65M32;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we are interested in the study of an inverse Cauchy problem governed by Stokes equation. It consists in determining the fluid velocity and the flux over a part of the boundary, by introducing given measurements on the remaining part. As it’s known, it is one of highly ill-posed problems in the Hadamard’s sense (Phys Today 6:18, 1953), it is then an interesting challenge to carry out a numerical procedure for approximating their solutions, in particular, in the presence of noisy data. To solve this problem, we propose here a regularizing approach based on a Tikhonov regularization method. We show the existence of the regularization optimization problem and prove the convergence of subsequence of optimal solutions of Tikhonov regularization formulations to the solution of the Cauchy problem, when the noise level goes to zero. Then, we suggest the numerical approximation of this problem using the finite elements method of P1Bubble/P1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{1Bubble}/P_1$$\end{document} type’s, we show the existence of the discrete optimal regularized solution without noise and prove the convergence of subsequence of discrete optimal solutions to the solution of the continuous optimization problem. Finally, we provide some numerical results showing the accuracy and the efficiency of the proposed approach.
引用
收藏
相关论文
共 50 条
  • [1] On Numerical Approaches for Solving an Inverse Cauchy Stokes Problem
    Ouaissa, Hamid
    Chakib, Abdelkrim
    Nachaoui, Abdeljalil
    Nachaoui, Mourad
    APPLIED MATHEMATICS AND OPTIMIZATION, 2022, 85 (01):
  • [2] NASH STRATEGIES FOR THE INVERSE INCLUSION CAUCHY-STOKES PROBLEM
    Habbal, Abderrahmane
    Kallel, Moez
    Ouni, Marwa
    INVERSE PROBLEMS AND IMAGING, 2019, 13 (04) : 827 - 862
  • [3] A control type method for solving the Cauchy-Stokes problem
    Aboulaich, Rajae
    Ben Abda, Amel
    Kallel, Moez
    APPLIED MATHEMATICAL MODELLING, 2013, 37 (06) : 4295 - 4304
  • [4] Solving a nonlinear inverse Robin problem through a linear Cauchy problem
    Gong, R. F.
    Yu, P. J.
    Jin, Q. N.
    Cheng, X. L.
    Han, W.
    APPLICABLE ANALYSIS, 2020, 99 (12) : 2093 - 2114
  • [5] NUMERICAL ALGORITHMS FOR SOLVING THE INVERSE PROBLEM
    Huseynova, N. Sh.
    Orucova, M. Sh.
    Safarova, N. A.
    Hajiyeva, N. S.
    Rustamova, L. A.
    PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON CONTROL AND OPTIMIZATION WITH INDUSTRIAL APPLICATIONS, VOL I, 2018, : 191 - 193
  • [6] Some novel numerical techniques for an inverse Cauchy problem
    Nachaoui, A.
    Nachaoui, M.
    Chakib, A.
    Hilal, M. A.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 381
  • [7] Numerical Solving of Radiation Geometrical Inverse Problem
    Nenarokomov, Aleksey V.
    Chebakov, Evgeniy V.
    Reviznikov, Dmitry L.
    Krainova, Irina V.
    HEAT TRANSFER ENGINEERING, 2024, 45 (02) : 117 - 132
  • [8] A numerical method for solving an inverse thermoacoustic problem
    Kabanikhin S.I.
    Krivorot'ko O.I.
    Shishlenin M.A.
    Kabanikhin, S. I. (kabanikhin@sscc.nsc.ru), 1600, Maik Nauka Publishing / Springer SBM (06): : 34 - 39
  • [9] Novel Meshfree Scheme For Solving The Inverse Cauchy problem Of Heat Conduction
    Arora, Surbhi
    Dabas, Jaydev
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES, 2022, 92 (03) : 411 - 418
  • [10] Novel Meshfree Scheme For Solving The Inverse Cauchy problem Of Heat Conduction
    Surbhi Arora
    Jaydev Dabas
    Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 2022, 92 : 411 - 418