On Numerical Approaches for Solving an Inverse Cauchy Stokes Problem

被引:0
|
作者
Hamid Ouaissa
Abdelkrim Chakib
Abdeljalil Nachaoui
Mourad Nachaoui
机构
[1] Université Sultan Moulay Slimane,Laboratoire de Mathématiques et Applications, Faculté des Sciences et Techniques
[2] Laboratoire de Mathématiques Jean Leray UMR6629 CNRS / Université de Nantes 2 rue de la Houssinière,undefined
来源
Applied Mathematics & Optimization | 2022年 / 85卷
关键词
Inverse problems; Stokes equation; Tikhonov regularization; Numerical approximation; Finite element method; 65N21; 65M60; 65M30; 65M32;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we are interested in the study of an inverse Cauchy problem governed by Stokes equation. It consists in determining the fluid velocity and the flux over a part of the boundary, by introducing given measurements on the remaining part. As it’s known, it is one of highly ill-posed problems in the Hadamard’s sense (Phys Today 6:18, 1953), it is then an interesting challenge to carry out a numerical procedure for approximating their solutions, in particular, in the presence of noisy data. To solve this problem, we propose here a regularizing approach based on a Tikhonov regularization method. We show the existence of the regularization optimization problem and prove the convergence of subsequence of optimal solutions of Tikhonov regularization formulations to the solution of the Cauchy problem, when the noise level goes to zero. Then, we suggest the numerical approximation of this problem using the finite elements method of P1Bubble/P1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{1Bubble}/P_1$$\end{document} type’s, we show the existence of the discrete optimal regularized solution without noise and prove the convergence of subsequence of discrete optimal solutions to the solution of the continuous optimization problem. Finally, we provide some numerical results showing the accuracy and the efficiency of the proposed approach.
引用
收藏
相关论文
共 50 条
  • [1] On Numerical Approaches for Solving an Inverse Cauchy Stokes Problem
    Ouaissa, Hamid
    Chakib, Abdelkrim
    Nachaoui, Abdeljalil
    Nachaoui, Mourad
    APPLIED MATHEMATICS AND OPTIMIZATION, 2022, 85 (01)
  • [2] On numerical resolution of an inverse Cauchy problem modeling the airflow in the bronchial tree
    Chakib, A.
    Ouaissa, H.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2021, 40 (01)
  • [3] On numerical resolution of an inverse Cauchy problem modeling the airflow in the bronchial tree
    A. Chakib
    H. Ouaissa
    Computational and Applied Mathematics, 2021, 40
  • [4] Solving a nonlinear inverse Robin problem through a linear Cauchy problem
    Gong, R. F.
    Yu, P. J.
    Jin, Q. N.
    Cheng, X. L.
    Han, W.
    APPLICABLE ANALYSIS, 2020, 99 (12) : 2093 - 2114
  • [5] Numerical techniques for solving system of nonlinear inverse problem
    Pourgholi, Reza
    Tabasi, S. Hashem
    Zeidabadi, Hamed
    ENGINEERING WITH COMPUTERS, 2018, 34 (03) : 487 - 502
  • [6] Numerical techniques for solving system of nonlinear inverse problem
    Reza Pourgholi
    S. Hashem Tabasi
    Hamed Zeidabadi
    Engineering with Computers, 2018, 34 : 487 - 502
  • [7] On the Cauchy problem for stochastic Stokes equations
    Mikulevicius, R
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2002, 34 (01) : 121 - 141
  • [8] A Numerical Algorithm Based on RBFs for Solving an Inverse Source Problem
    A. Shidfar
    Z. Darooghehgimofrad
    Bulletin of the Malaysian Mathematical Sciences Society, 2017, 40 : 1149 - 1158
  • [9] A Numerical Algorithm Based on RBFs for Solving an Inverse Source Problem
    Shidfar, A.
    Darooghehgimofrad, Z.
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2017, 40 (03) : 1149 - 1158
  • [10] Numerical method for solving inverse source problem for Poisson equation
    Benyoucef, Abir
    Alem, Leila
    Chorfi, Lahcene
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2021, 14 (10)