Error bounds for kernel-based numerical differentiation

被引:0
|
作者
Oleg Davydov
Robert Schaback
机构
[1] University of Giessen,Department of Mathematics
[2] Universität Göttingen,Institut für Numerische und Angewandte Mathematik
来源
Numerische Mathematik | 2016年 / 132卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The literature on meshless methods shows that kernel-based numerical differentiation formulae are robust and provide high accuracy at low cost. This paper analyzes the error of such formulas, using the new technique of growth functions. It allows to bypass certain technical assumptions that were needed to prove the standard error bounds on interpolants and their derivatives. Since differentiation formulas based on polynomials also have error bounds in terms of growth functions, we have a convenient way to compare kernel-based and polynomial-based formulas. It follows that kernel-based formulas are comparable in accuracy to the best possible polynomial-based formulas. A variety of examples is provided.
引用
收藏
页码:243 / 269
页数:26
相关论文
共 50 条
  • [41] Boosting as a kernel-based method
    Aleksandr Y. Aravkin
    Giulio Bottegal
    Gianluigi Pillonetto
    Machine Learning, 2019, 108 : 1951 - 1974
  • [42] Kernel-Based Copula Processes
    Jaimungal, Sebastian
    Ng, Eddie K. H.
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, PT I, 2009, 5781 : 628 - +
  • [43] Online kernel-based clustering
    Alam, Abrar
    Malhotra, Akshay
    Schizas, Ioannis D.
    PATTERN RECOGNITION, 2025, 158
  • [44] Kernel-based associative memory
    Nowicki, D
    Dekhtyarenko, E
    2004 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-4, PROCEEDINGS, 2004, : 741 - 744
  • [45] Kernel-Based Reinforcement Learning
    Dirk Ormoneit
    Śaunak Sen
    Machine Learning, 2002, 49 : 161 - 178
  • [46] Kernel-based text categorization
    Jalam, R
    Teytaud, O
    IJCNN'01: INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-4, PROCEEDINGS, 2001, : 1891 - 1896
  • [47] Kernel-based reinforcement learning
    Ormoneit, D
    Sen, S
    MACHINE LEARNING, 2002, 49 (2-3) : 161 - 178
  • [48] Kernel-based object tracking
    Comaniciu, D
    Ramesh, V
    Meer, P
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2003, 25 (05) : 564 - 577
  • [49] Kernel-based association test
    Yang, Hsin-Chou
    Hsieh, Hsin-Yi
    Fann, Cathy S. J.
    GENETICS, 2008, 179 (02) : 1057 - 1068
  • [50] Kernel-based visual servoing
    Kallem, Vinutha
    Dewan, Maneesh
    Swensen, John P.
    Hager, Gregory D.
    Cowan, Noah J.
    2007 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, VOLS 1-9, 2007, : 1981 - +