A generalized Trudinger-Moser inequality on a compact Riemannian surface with conical singularities

被引:0
作者
Xiaobao Zhu
机构
[1] Renmin University of China,Department of Mathematics
来源
Science China Mathematics | 2019年 / 62卷
关键词
Trudinger-Moser inequality; the extremal function; blow-up analysis; conical singularity; 58J05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, using the method of blow-up analysis, we establish a generalized Trudinger-Moser inequality on a compact Riemannian surface with conical singularity. Precisely, let (Σ,D) be such a surface with divisor D=Σi=1mβipi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D=\Sigma_{i=1}^m\beta_{i}p_{i}$$\end{document}, where βi > −1 and pi ∈ Σ for i = 1, …, m, and g be a metric representing D. Denote b0 = 4π(1 + min1⩽i⩽mβi). Suppose ψ : Σ → ℝ is a continuous function with ∫Σψdvg ≠ 0 and define λ1∗∗(∑,g)=infu∈H1(∑,g),∫∑ψudvg=0,∫∑u2dvg=1∫∑|∇gu|2dvg.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _1^{**} (\sum ,g) = \mathop {\inf }\limits_{u \in H^1 (\sum ,g),\smallint _\sum \psi udv_g = 0,\smallint _\sum u^2 dv_g = 1} \int_\sum {\left| {\nabla _g u} \right|^2 dv_g .}$$\end{document} Then for anyα∈[0,λ1**(Σ,g))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha\in[0,\lambda_1^{**}(\Sigma, g))$$\end{document}, we have supu∈H1(∑,g),∫∑ψu=0,∫∑|∇gu|2dvg−α∫∑u2dvg⩽1∫∑eb0u2dvg<+∞.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathop {\sup }\limits_{u \in H^1 (\sum ,g),\smallint _\sum \psi u = 0,\smallint _\sum \left| {\nabla _g u} \right|^2 dv_g - \alpha \smallint _\sum u^2 dv_g \leqslant 1} \int_\sum {e^{b_0 u^2 } dv_g < + \infty .}$$\end{document} When b > b0, the integrals ∫∑ebu2dvg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\int_\sum {e^{bu^2 } dv_g }$$\end{document} are still finite, but the supremum is infinity. Moreover, we prove that the extremal function for the above inequality exists.
引用
收藏
页码:699 / 718
页数:19
相关论文
共 48 条
[1]  
Adimurthi O(2004)Blow-up analysis in dimension 2and a sharp form of Trudinger-Moser inequality Comm Partial Differential Equations 29 295-322
[2]  
Druet K(2007)A singular Moser-Trudinger embedding and its applications NoDEA Nonlinear Differential Equations Appl 13 585-603
[3]  
Adimurthi Y(2010)An interpolation of Hardy inequality and Trudinger-Moser inequality in ℝ Int Math Res Not IMRN 13 2394-2426
[4]  
Sandeep L(1986) and its applications Moser. Bull Sci Math 110 113-127
[5]  
Adimurthi A(1990)On the existence of an extremal function for an inequality of J Proc Amer Math Soc 108 821-832
[6]  
Yang W(1991)A Trudinger inequality on surfaces with conical singularities Duke Math J 63 615-622
[7]  
Carleson W(1995)Classification of solutions of some nonlinear elliptic equations Duke Math J 78 437-451
[8]  
Chang C(2015)What kinds of singular surfaces can admit constant curvature Calc Var Partial Differential Equations 54 2341-2366
[9]  
Chen W(1997)Extremal functions for the singular Moser-Trudinger inequality in 2 dimensions Asian J Math 1 230-248
[10]  
Chen C(1992)The differential equation Δ Comment Math Helv 67 471-497