Predicting cash holdings using supervised machine learning algorithms

被引:0
|
作者
Şirin Özlem
Omer Faruk Tan
机构
[1] MEF University,Department of Industrial Engineering, Faculty of Engineering
[2] Marmara University,Department of Accounting and Finance, Faculty of Business Administration
来源
Financial Innovation | / 8卷
关键词
XGBoost; MLNN; Cash holdings; Turkey; Machine learning; C38; C53; G30;
D O I
暂无
中图分类号
学科分类号
摘要
This study predicts the cash holdings policy of Turkish firms, given the 20 selected features with machine learning algorithm methods. 211 listed firms in the Borsa Istanbul are analyzed over the period between 2006 and 2019. Multiple linear regression (MLR), k-nearest neighbors (KNN), support vector regression (SVR), decision trees (DT), extreme gradient boosting algorithm (XGBoost) and multi-layer neural networks (MLNN) are used for prediction. Results reveal that MLR, KNN, and SVR provide high root mean square error (RMSE) and low R2 values. Meanwhile, more complex algorithms, such as DT and especially XGBoost, derive higher accuracy with a 0.73 R2 value. Therefore, using advanced machine learning algorithms, we may predict cash holdings considerably.
引用
收藏
相关论文
共 50 条
  • [1] Predicting cash holdings using supervised machine learning algorithms
    Ozlem, Sirin
    Tan, Omer Faruk
    FINANCIAL INNOVATION, 2022, 8 (01)
  • [2] Predicting Diabetes Diseases Using Mixed Data and Supervised Machine Learning Algorithms
    Daanouni, Othmane
    Cherradi, Bouchaib
    Tmiri, Amal
    4TH INTERNATIONAL CONFERENCE ON SMART CITY APPLICATIONS (SCA' 19), 2019,
  • [3] Supervised Rainfall Learning Model Using Machine Learning Algorithms
    Sharma, Amit Kumar
    Chaurasia, Sandeep
    Srivastava, Devesh Kumar
    INTERNATIONAL CONFERENCE ON ADVANCED MACHINE LEARNING TECHNOLOGIES AND APPLICATIONS (AMLTA2018), 2018, 723 : 275 - 283
  • [4] Predicting Cervical Cancer using Advanced Machine Learning Algorithms
    Vaishnodevi, S.
    Devarajan, N. Manikanda
    Murali, G.
    Kumar, D. Vinod
    Madhuvappan, C. Arunkumar
    Siva, C.
    2ND INTERNATIONAL CONFERENCE ON SUSTAINABLE COMPUTING AND SMART SYSTEMS, ICSCSS 2024, 2024, : 1600 - 1604
  • [6] Cryptocurrency Price Prediction Using Supervised Machine Learning Algorithms
    Chaudhary, Divya
    Saroj, Sushil Kumar
    ADCAIJ-ADVANCES IN DISTRIBUTED COMPUTING AND ARTIFICIAL INTELLIGENCE JOURNAL, 2023, 12 (01):
  • [7] Predicting of Credit Risk Using Machine Learning Algorithms
    Antony, Tisa Maria
    Kumar, B. Sathish
    ARTIFICIAL INTELLIGENCE: THEORY AND APPLICATIONS, VOL 1, AITA 2023, 2024, 843 : 99 - 114
  • [8] A framework for predicting academic orientation using supervised machine learning
    El Mrabet H.
    Ait Moussa A.
    Journal of Ambient Intelligence and Humanized Computing, 2023, 14 (12) : 16539 - 16549
  • [9] Using supervised machine learning algorithms in pavement degradation monitoring
    Shtayat, Amir
    Moridpour, Sara
    Best, Berthold
    Abuhassan, Mohammad
    INTERNATIONAL JOURNAL OF TRANSPORTATION SCIENCE AND TECHNOLOGY, 2023, 12 (02) : 628 - 639
  • [10] Predicting Workplace Injuries Using Machine Learning Algorithms
    Sukumar, Divya
    Zhang, Ji
    Tao, Xiaohui
    Wang, Xin
    Zhang, Wenbin
    2020 IEEE 7TH INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ADVANCED ANALYTICS (DSAA 2020), 2020, : 763 - 764