Some ultrabornological normed function spaces

被引:0
作者
Alain Bernard
Stuart J. Sidney
机构
[1] Institut Fourier,
[2] URA 188 du CNRS,undefined
[3] Université de Grenoble 1,undefined
[4] BP 74,undefined
[5] F-38402 St. Martin d'Hères Cedex,undefined
[6] France ,undefined
[7] Department of Mathematics,undefined
[8] Box U-9,undefined
[9] The University of Connecticut,undefined
[10] Storrs,undefined
[11] CT 06269-3009,undefined
[12] U.S.A.,undefined
来源
Archiv der Mathematik | 1997年 / 69卷
关键词
Continuous Function; Open Subset; Function Space; Normed Function; Hausdorff Space;
D O I
暂无
中图分类号
学科分类号
摘要
A variety of normed function spaces, including the space E0 (X) of continuous functions on the compact Hausdorff space X that are locally constant on a dense open subset of X, are shown to be ultrabornological.
引用
收藏
页码:409 / 417
页数:8
相关论文
共 50 条
  • [1] Topological properties of some function spaces
    Gabriyelyan, Saak
    Osipov, Alexander, V
    TOPOLOGY AND ITS APPLICATIONS, 2020, 279
  • [2] Complete sets in normed linear spaces
    Chan He
    Horst Martini
    Senlin Wu
    Banach Journal of Mathematical Analysis, 2023, 17
  • [3] BAIRE PROPERTY OF SOME FUNCTION SPACES
    Osipov, A., V
    Pytkeev, E. G.
    ACTA MATHEMATICA HUNGARICA, 2022, 168 (01) : 246 - 259
  • [4] Baire property of some function spaces
    A. V. Osipov
    E. G. Pytkeev
    Acta Mathematica Hungarica, 2022, 168 : 246 - 259
  • [5] Complete sets in normed linear spaces
    He, Chan
    Martini, Horst
    Wu, Senlin
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2023, 17 (03)
  • [6] On function spaces related to some kinds of weakly sober spaces
    Zhang, Xiaoyuan
    Bao, Meng
    Xu, Xiaoquan
    AIMS MATHEMATICS, 2022, 7 (05): : 9311 - 9324
  • [7] Some upper bounds for density of function spaces
    Onal, Sueleyman
    Vural, Cetin
    TOPOLOGY AND ITS APPLICATIONS, 2009, 156 (09) : 1630 - 1635
  • [8] A NOTE ON APPROXIMATION OF CONTINUOUS FUNCTIONS ON NORMED SPACES
    Mytrofanov, M. A.
    Ravsky, A., V
    CARPATHIAN MATHEMATICAL PUBLICATIONS, 2020, 12 (01) : 107 - 110
  • [9] Semi-smooth Points in Some Classical Function Spaces
    Beata Derȩgowska
    Beata Gryszka
    Karol Gryszka
    Paweł Wójcik
    Results in Mathematics, 2022, 77
  • [10] Semi-smooth Points in Some Classical Function Spaces
    Deregowska, Beata
    Gryszka, Beata
    Gryszka, Karol
    Wojcik, Pawel
    RESULTS IN MATHEMATICS, 2022, 77 (01)