Weighted weak type estimates for commutators of the Marcinkiewicz integrals

被引:0
作者
Yong Ding
Shanzhen Lu
Pu Zhang
机构
[1] Beijing Normal University,Department of Mathematics
[2] Zhejiang Institute of Science and Technology,Department of Information and Computing Science
来源
Science in China Series A: Mathematics | 2004年 / 47卷
关键词
Marcinkiewicz integral; commutator; weight; weak type estimate;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper the authors give the weighted weakLlogL type estimates for a class of the higher order commutator generated by the Marcinkiewicz integral and aBMO function. In addition, the weak type norm inequalities for the Marcinkiewicz integral and its commutators with different weight functions are also discussed.
引用
收藏
相关论文
共 13 条
  • [1] Stein E. M.(1958)On the functions of Littlewood-Paley, Lusin, and Marcinkiewicz Trans. Amer. Math. Soc 88 430-466
  • [2] Torchinsky A.(1990)A note on the Marcinkiewicz integral Colloq. Math. 60/61 235-243
  • [3] Wang S. L.(1995)Endpoint estimates for commutators of singular integral operators J. Punct. Anal. 128 163-185
  • [4] Perez C.(2000)Two-weight, weak-type norm inequalities for fractional integrals, C alderón-Zygmund operators and commutators Indiana Univ. Math. J. 49 697-721
  • [5] Cruz-Uribe D.(1962)Convolution operators on Banach space valued functions Proc. Nat. Acad. Sci. USA 48 356-365
  • [6] Pérez C.(1991)Weighted norm inequalities for commutators of strongly singular integrals Indiana Univ. Math. J. 40 1398-1420
  • [7] Benedek A.(1997)Sharp estimates for commutators of singular integrals via iterations of the Hardy-Littlewood maximal function J. Fourier Anal, and Appl. 3 743-756
  • [8] Calderón A. P.(undefined)undefined undefined undefined undefined-undefined
  • [9] Panzone R.(undefined)undefined undefined undefined undefined-undefined
  • [10] Garcia-Cuerva J.(undefined)undefined undefined undefined undefined-undefined