The Number of Configurations of Radii that Can Occur in Compact Packings of the Plane with Discs of n Sizes is Finite

被引:0
作者
Miek Messerschmidt
机构
[1] University of Pretoria,Department of Mathematics and Applied Mathematics
来源
Discrete & Computational Geometry | 2024年 / 71卷
关键词
Circle packing; Compact packing; 05B40; 52C26; 52C15;
D O I
暂无
中图分类号
学科分类号
摘要
By a compact packing of the plane by discs, P, we mean a collection of closed discs in the plane with pairwise disjoint interior so that, for every disc C∈P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C\in P$$\end{document}, there exists a sequence of discs D0,…,Dm-1∈P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_{0},\ldots ,D_{m-1}\in P$$\end{document} so that each Di\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_i$$\end{document} is tangent to both C and Di+1modm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_{i+1\,mod \,m}$$\end{document}. We prove, for every n∈N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\in \mathbb {N}$$\end{document}, that there exist only finitely many tuples (r0,r1,…,rn-1)∈Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(r_{0},r_{1},\ldots ,r_{n-1})\in \mathbb {R}^{n}$$\end{document} with 0<r0<r1<…<rn-1=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<r_{0}<r_{1}<\ldots <r_{n-1}=1$$\end{document} that can occur as the radii of the discs in any compact packing of the plane with n distinct sizes of disc.
引用
收藏
页码:667 / 682
页数:15
相关论文
共 10 条
[1]  
Connelly R(2021)Packing disks by flipping and flowing Discrete Comput. Geom. 66 1262-1285
[2]  
Gortler SJ(2021)Compact packings of space with two sizes of spheres Discrete Comput. Geom. 65 1287-1295
[3]  
Fernique Th(2021)Compact packings of the plane with three sizes of discs Discrete Comput. Geom. 66 613-635
[4]  
Fernique Th(2006)Compact packings of the plane with two sizes of discs Discrete Comput. Geom. 35 255-267
[5]  
Hashemi A(1993)Complex alloy phases for binary hard-disc mixtures Philos. Mag. B 68 85-113
[6]  
Sizova O(2020)On compact packings of the plane with circles of three radii Comput. Geom. 86 # 101564-undefined
[7]  
Kennedy T(undefined)undefined undefined undefined undefined-undefined
[8]  
Likos CN(undefined)undefined undefined undefined undefined-undefined
[9]  
Henley CL(undefined)undefined undefined undefined undefined-undefined
[10]  
Messerschmidt M(undefined)undefined undefined undefined undefined-undefined