Photo-Nernst current in graphene

被引:34
作者
Cao, Helin [1 ]
Aivazian, Grant [1 ]
Fei, Zaiyao [1 ]
Ross, Jason [2 ]
Cobden, David H. [1 ]
Xu, Xiaodong [1 ,2 ]
机构
[1] Univ Washington, Dept Phys, Seattle, WA 98195 USA
[2] Univ Washington, Dept Mat Sci & Engn, Seattle, WA 98195 USA
基金
美国国家科学基金会;
关键词
PHOTOCURRENT; TRANSPORT; GENERATION; TIME;
D O I
10.1038/NPHYS3549
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Photocurrent measurements provide a powerful means of studying the spatially resolved optoelectronic and electrical properties of a material or device(1-7). Generally speaking there are two classes of mechanism for photocurrent generation: those involving separation of electrons and holes, and thermoelectric effects driven by electron temperature gradients. Here we introduce a new member in the latter class: the photo-Nernst effect. In graphene devices in a perpendicular magnetic field we observe photocurrent generated uniformly along the free edges, with opposite sign at opposite edges. The signal is antisymmetric in field, shows a peak versus gate voltage at the neutrality point flanked by wings of opposite sign at low fields, and exhibits quantum oscillations at higher fields. These features are all explained by the Nernst effect(8-10) associated with laser-induced electron heating(6,11-14). This 'photo-Nernst' current provides a simple and clear demonstration of the Shockley-Ramo nature of long-range photocurrent generation in a gapless material(5).
引用
收藏
页码:236 / +
页数:5
相关论文
共 35 条
[1]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[2]   Oscillating Nernst-Ettingshausen effect in bismuth across the quantum limit [J].
Behnia, Kamran ;
Measson, Marie-Aude ;
Kopelevich, Yakov .
PHYSICAL REVIEW LETTERS, 2007, 98 (16)
[3]   Supercollision cooling in undoped graphene [J].
Betz, A. C. ;
Jhang, S. H. ;
Pallecchi, E. ;
Ferreira, R. ;
Feve, G. ;
Berroir, J-M. ;
Placais, B. .
NATURE PHYSICS, 2013, 9 (02) :109-112
[4]   Thermopower and Nernst effect in graphene in a magnetic field [J].
Checkelsky, Joseph G. ;
Ong, N. P. .
PHYSICAL REVIEW B, 2009, 80 (08)
[5]  
Drexler C, 2013, NAT NANOTECHNOL, V8, P104, DOI [10.1038/nnano.2012.231, 10.1038/NNANO.2012.231]
[6]   Energy Dissipation in Graphene Field-Effect Transistors [J].
Freitag, Marcus ;
Steiner, Mathias ;
Martin, Yves ;
Perebeinos, Vasili ;
Chen, Zhihong ;
Tsang, James C. ;
Avouris, Phaedon .
NANO LETTERS, 2009, 9 (05) :1883-1888
[7]   Hot Carrier-Assisted Intrinsic Photoresponse in Graphene [J].
Gabor, Nathaniel M. ;
Song, Justin C. W. ;
Ma, Qiong ;
Nair, Nityan L. ;
Taychatanapat, Thiti ;
Watanabe, Kenji ;
Taniguchi, Takashi ;
Levitov, Leonid S. ;
Jarillo-Herrero, Pablo .
SCIENCE, 2011, 334 (6056) :648-652
[8]   Photocurrent measurements of supercollision cooling in graphene [J].
Graham, Matt W. ;
Shi, Su-Fei ;
Ralph, Daniel C. ;
Park, Jiwoong ;
McEuen, Paul L. .
NATURE PHYSICS, 2013, 9 (02) :103-108
[9]   Direct View of Hot Carrier Dynamics in Graphene [J].
Johannsen, Jens Christian ;
Ulstrup, Soren ;
Cilento, Federico ;
Crepaldi, Alberto ;
Zacchigna, Michele ;
Cacho, Cephise ;
Turcu, I. C. Edmond ;
Springate, Emma ;
Fromm, Felix ;
Raidel, Christian ;
Seyller, Thomas ;
Parmigiani, Fulvio ;
Grioni, Marco ;
Hofmann, Philip .
PHYSICAL REVIEW LETTERS, 2013, 111 (02)
[10]   THERMOELECTRIC EFFECT IN A WEAKLY DISORDERED INVERSION LAYER SUBJECT TO A QUANTIZING MAGNETIC-FIELD [J].
JONSON, M ;
GIRVIN, SM .
PHYSICAL REVIEW B, 1984, 29 (04) :1939-1946