Compactness of embeddings of sobolev type on metric measure spaces

被引:0
作者
I. A. Ivanishko
V. G. Krotov
机构
[1] Belorussian State University,
来源
Mathematical Notes | 2009年 / 86卷
关键词
embedding of Sobolev type; metric measure space; Hardy-Littlewood maximal function; Hölder class; Sobolev space; Borel measure; Lebesgue measure;
D O I
暂无
中图分类号
学科分类号
摘要
We establish conditions for the compactness of embeddings for some classes of functions on metric space with measure satisfying the duplication condition. These classes are defined in terms of the Lp-summability of maximal functions measuring local smoothness.
引用
收藏
页码:775 / 788
页数:13
相关论文
共 14 条
[1]  
Calderón A. P.(1972)Estimates for singular integral operators in terms of maximal functions Studia Math. 44 563-582
[2]  
Calderón A. P.(1978)Sobolev type inequalities for Studia Math. 62 75-92
[3]  
Scott R.(1987) > 0 [J] Sov. Math., Dokl. 35 345-348
[4]  
Kolyada V. I.(1999)Estimates of maximal functions connected with local smoothness Anal. Math. 25 277-300
[5]  
Kolyada V. I.(1977)Estimates of maximal functions measuring local smoothness Mat. Sb. 103 563-589
[6]  
Oskolkov K. I.(1996)Approximation properties of integrable functions on sets of full measure Potential Anal. 5 403-415
[7]  
Hajłasz P.(2004)Sobolev spaces on an arbitrary metric space Trudy Inst. Mat. NAN Belarus 12 64-67
[8]  
Ivanishko I. A.(2004)Estimates of Calderón-Kolyady maximal functions on spaces of homogeneous type J. Math. Anal. Appl. 290 86-104
[9]  
Jonsson A.(1999)Haar wavelets of higher order on fractals and regularity of functions Ann. Acad. Sci. Fenn. Math. 24 123-132
[10]  
Kałamajska A.(2005)On compactness of embedding for Sobolev spaces defined on metric spaces Mat. Zametki 77 937-941