Symmetry and monotonicity of positive solutions for a system involving fractional p&q-Laplacian in Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^{n}$$\end{document}

被引:0
作者
Linfen Cao
Linlin Fan
机构
[1] Henan Normal University,College of Mathematics and Information Science
关键词
Method of moving planes; Fractional p&q-Laplacian; Radial symmetry; Monotonicity; Primary 35R11; Secondary 35J92;
D O I
10.1007/s13324-022-00652-2
中图分类号
学科分类号
摘要
In this paper, we study a nonlinear system involving the fractional p&q-Laplacian in Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^{n}$$\end{document}(-Δ)ps1u(x)+(-Δ)qs2u(x)=f(u(x),v(x)),x∈Rn,(-Δ)ps1v(x)+(-Δ)qs2v(x)=g(u(x),v(x)),x∈Rn,u,v>0,x∈Rn.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{array}{ll} (-\Delta )_{p}^{s_{1}}u(x)+(-\Delta )_{q}^{s_{2}}u(x)=f(u(x),v(x)), &{}x\in {\mathbb {R}}^{n},\\ (-\Delta )_{p}^{s_{1}}v(x)+(-\Delta )_{q}^{s_{2}}v(x)=g(u(x),v(x)), &{}x\in {\mathbb {R}}^{n},\\ u,v>0,&{}x\in {\mathbb {R}}^{n}. \end{array} \right. \end{aligned}$$\end{document}where 0<s1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<s_{1}$$\end{document}, s2<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s_{2}<1$$\end{document}, p,q>2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p,q>2$$\end{document}. By using the direct method of moving planes, we prove that the positive solution (u, v) of system above must be radially symmetric and monotone decreasing in the whole space.
引用
收藏
相关论文
共 42 条
  • [1] Chen W(2018)Maximum principles for the fractional p-laplacian and symmetry of solutions Adv. Math. 335 735-758
  • [2] Li C(2019)Symmetry and non-existence of positive solutions for fractional p-laplacian systems Nonlinear Anal. 183 303-322
  • [3] Chen Y(2019)Symmetry of positive solutions for choquard equations with fractional p-laplacian Nonlinear Anal. 182 248-262
  • [4] Liu B(2007)An extension problem related to the fractional laplacian Comm. PDE. 32 1245-1260
  • [5] Ma L(2013)A concave-convex elliptic problem involving the fractional Laplacian Proc. Roy. Soc. Edinburgh Sect. A 143 39-71
  • [6] Zhang Z(2016)Indefinite fractional elliptic problem and liouville theorems J. Differ. Equ. 260 4758-4785
  • [7] Caffarelli L(2015)Radial symmetry and monotonicity for fractional H Complex Var. Elliptic Equ. 60 1685-1695
  • [8] Silvestre L(2021)non equation in J. Korean Math. Soc. 58 1449-1460
  • [9] Brandle C(2015)Radial symmetry of positive solutions to a class of fractional Laplacian with a singular nonlinearity Adv. Math. 274 167-198
  • [10] Colorado E(2005)Liouville theorems involving the fractional laplacian on a half space Discrete Contin. Dyn. Syst. 12 347-354