Explicit construction of attracting integral manifolds for a dissipative hyperbolic equation

被引:0
作者
Goritsky A.Yu. [1 ]
机构
[1] Faculty of Mechanics and Mathematics, Moscow State University
基金
俄罗斯基础研究基金会;
关键词
Manifold; Hyperbolic Equation; Invariant Manifold; Global Attractor; Integral Curve;
D O I
10.1007/s10958-007-0207-1
中图分类号
学科分类号
摘要
A dissipative sine-Gordon-type equation in a bounded domain is considered. A simple explicit construction of finite-dimensional integral manifolds with exponential tracking is proposed. © Springer Science+Business Media, Inc. 2007.
引用
收藏
页码:3239 / 3252
页数:13
相关论文
共 26 条
[1]  
Henry D., Geometric Theory of Semilinear Parabolic Equations, (1981)
[2]  
Hale J.K., Asymptotic Behavior of Dissipative Systems, (1988)
[3]  
Haraux A., Systèmes Dynamiques Dissipatifs et Applications, (1991)
[4]  
Temarn R., Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Ser, 68
[5]  
Babin A.V., Vishik M.I., Attractors of Evolution Equations, (1992)
[6]  
Chepyzhov V.V., Vishik M.I., Attractors for Equations of Mathematical Physics, (2002)
[7]  
Constantine P., Foias C., Nicolaenko B., Temam R., Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations, 70
[8]  
Chueshov I.D., Introduction to the Theory of Infinite-Dimensional Dissipative Systems, Acta Scientific, (2002)
[9]  
Foias C., Sell G.R., Temam R., Inertial manifolds for nonlinear evolutionary equations, J. Different. Equations, 73, 2, pp. 309-353, (1988)
[10]  
Foias C., Manley O., Temam R., Modeling of the interaction of small and large eddies in two-dimensional turbulent flows, Math. Mod. Num. Anal, 22, pp. 93-114, (1988)