Exact and approximate solutions of Schrödinger’s equation with hyperbolic double-well potentials

被引:0
作者
Richard L. Hall
Nasser Saad
机构
[1] Concordia University,Department of Mathematics and Statistics
[2] University of Prince Edward Island,School of Mathematical and Computational Sciences
来源
The European Physical Journal Plus | / 131卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Analytic and approximate solutions for the energy eigenvalues generated by the hyperbolic potentials, Vm(x) = - U0sinh2m(x/d )/cosh2m+2(x/d ) , m = 0, 1, 2,... , are constructed. A by-product of this work is the construction of polynomial solutions for the confluent Heun equation along with necessary and sufficient conditions for the existence of such solutions based on the evaluation of a three-term recurrence relation. Very accurate approximate solutions for the general problem with arbitrary potential parameters are found by use of the asymptotic iteration method.
引用
收藏
相关论文
共 35 条
[1]  
Downing C.A.(2013)undefined J. Math. Phys. 54 072101-undefined
[2]  
Fa-Kai W.(2014)undefined Commun. Theor. Phys. 61 153-undefined
[3]  
Zhan-Ying Y.(2014)undefined J. Math. Phys. 55 052102-undefined
[4]  
Chong L.(2015)undefined Int. J. Quantum Chem. 115 891-undefined
[5]  
Wen-Li Y.(2015)undefined Ann. Phys. (Berlin) 527 825-undefined
[6]  
Yao-Zhong Z.(1932)undefined Phys. Rev. 42 210-undefined
[7]  
Agbool D.(2003)undefined J. Math. Phys. 44 406-undefined
[8]  
Sun G.-H.(1933)undefined Z. Phys. 83 143-undefined
[9]  
Dong S.-H.(2014)undefined Appl. Math. Comput. 226 615-undefined
[10]  
Launey K.D.(2003)undefined J. Phys. A: Math. Gen. 36 11807-undefined