On the Asymptotic Behavior of Faber Polynomials for Domains With Piecewise Analytic Boundary

被引:0
作者
Erwin Miña-Díaz
机构
[1] University of Mississippi,Department of Mathematics
来源
Constructive Approximation | 2009年 / 29卷
关键词
Faber polynomials; Asymptotic behavior; Zeros of polynomials; Equilibrium measure; Schwarz reflection principle; Conformal map; 30E10; 30E15; 30C10; 30C15;
D O I
暂无
中图分类号
学科分类号
摘要
Let φ(z) be an analytic function on a punctured neighborhood of ∞, where it has a simple pole. The nth Faber polynomial Fn(z) (n=0,1,2,…) associated with φ is the polynomial part of the Laurent expansion at ∞ of [φ(z)]n. Assuming that ψ (the inverse of φ) conformally maps |w|>1 onto a domain Ω bounded by a piecewise analytic curve without cusps pointing out of Ω, and under an additional assumption concerning the “Lehman expansion” of ψ about those points of |w|=1 mapped onto corners of ∂Ω, we obtain asymptotic formulas for Fn that yield fine results on the limiting distribution of the zeros of Faber polynomials.
引用
收藏
页码:421 / 448
页数:27
相关论文
共 25 条
[1]  
Bartolomeo J.(1994)On Faber polynomials generated by an Math. Comput. 62 277-287
[2]  
He M.(1995)-star Math. Comput. 64 181-203
[3]  
Coleman J.P.(1987)The Faber polynomials for annular sectors Math. Comput. 49 231-241
[4]  
Myers N.J.(2001)The Faber polynomials for circular sectors Analysis 21 219-229
[5]  
Coleman J.P.(1994)On the decrease of Faber polynomials in domains with piecewise analytic boundary J. Comput. Appl. Math. 54 313-324
[6]  
Smith R.A.(1995)The Faber polynomials for Comput. Math. Appl. 30 307-315
[7]  
Gaier D.(1996)-fold symmetric domains Math. Comput. 65 151-156
[8]  
He M.(1995)The Faber polynomials for circular lunes Math. Proc. Camb. Phil. Soc. 118 437-447
[9]  
He M.(1957)The zeros of Faber polynomials generated by an Pac. J. Math. 7 1437-1449
[10]  
Kuijlaars A.B.J.(2006)-star Constr. Approx. 24 319-363