On Stress Relaxation in Bended Viscoelastic Plate with Tension–Compression Asymmetry

被引:0
作者
G. M. Sevastyanov
机构
[1] Institute of Machinery and Metallurgy,
[2] Khabarovsk Federal Research Center,undefined
[3] Far Eastern Branch of the Russian Academy of Sciences,undefined
来源
Mechanics of Solids | 2023年 / 58卷
关键词
viscoelasticity; creep; bending; tension–compression asymmetry;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:2920 / 2932
页数:12
相关论文
共 37 条
[1]  
Maslov V. P.(1985)General theory of the equations of motion of an elastic medium of different moduli J. Appl. Math. Mech. 49 322-336
[2]  
Mosolov P. P.(1992)Fundamental general relationships for a model of an isotropically elastic heteromodular medium Dokl. Akad. Nauk SSSR 322 44-53
[3]  
Myasnikov V. P.(2002)Uniqueness and stability of the solutions for boundary value problems for bimodular nonlinear materials Dal’nevost. Mat. Zh. 3 242-253
[4]  
Oleinikov A. I.(2008)Multimodulus elasticity theory J. Appl. Mech. Tech. Phys. 49 129-135
[5]  
Oleinikov A. I.(2004)A criterion for description of anisotropy and yield differential effects in pressure-insensitive metals Int. J. Plasticity 20 2027-2045
[6]  
Mogil’nikov E. V.(2006)Orthotropic yield criterion for hexagonal closed packed metals Int. J. Plasticity 22 1171-1194
[7]  
Tsvelodub I. Yu.(2005)Theory of creep deformation with kinematic hardening for materials with different properties in tension and compression Int. J. Plasticity 21 435-462
[8]  
Cazacu O.(2020)Construction of constitutive equations for orthotropic materials with different properties in tension and compression under creep conditions J. Appl. Mech. Tech. Phys. 61 87-100
[9]  
Barlat F.(1992)Energy version of creep and stress-rupture strength theory for anisotropic and isotropic materials which differ in resistance to tension and compression J. Appl. Mech. Tech. Phys. 33 101-106
[10]  
Cazacu O.(1979)Construction of the creep equations for materials with different extension and compression properties J. Appl. Mech. Tech. Phys. 20 487-492