Three-dimensional (p, q) AdS superspaces and matter couplings

被引:0
作者
Sergei M. Kuzenko
Ulf Lindström
Gabriele Tartaglino-Mazzucchelli
机构
[1] The University of Western Australia,School of Physics M013
[2] Uppsala University,Theoretical Physics, Department of Physics and Astronomy
来源
Journal of High Energy Physics | / 2012卷
关键词
Extended Supersymmetry; Superspaces; Supersymmetric Effective Theories; Sigma Models;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document}-extended (p, q) AdS superspaces in three space-time dimensions, with p + q = \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} and p ≥ q, and analyse their geometry. We show that all (p, q) AdS superspaces with XIJ KL = 0 are conformally flat. Nonlinear σ-models with (p, q) AdS supersymmetry exist for p + q ≤ 4 (for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} > {4} $\end{document} the target space geometries are highly restricted). Here we concentrate on studying off-shell \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} = {3} $\end{document} supersymmetric σ-models in AdS3. For each of the cases (3,0) and (2,1), we give three different realisations of the supersymmetric action. We show that (3,0) AdS supersymmetry requires the σ-model to be superconformal, and hence the corresponding target space is a hyperkähler cone. In the case of (2,1) AdS supersymmetry, the σ-model target space must be a non-compact hyperkähler manifold endowed with a Killing vector field which generates an SO(2) group of rotations of the two-sphere of complex structures.
引用
收藏
相关论文
共 127 条
  • [1] Achúcarro A(1986)A Chern-Simons action for three-dimensional anti-de Sitter supergravity theories Phys. Lett. B 180 89-undefined
  • [2] Townsend P(1985)Supersymmetric σ-models and the heterotic String Phys. Lett. B 160 398-undefined
  • [3] Hull C(2012)Super-W(infinity) asymptotic symmetry of higher-spin AdS JHEP 06 037-undefined
  • [4] Witten E(1978) supergravity Phys. Lett. B 76 54-undefined
  • [5] Henneaux M(1996)Poincaré supergravity as broken superconformal gravity Nucl. Phys. B 467 183-undefined
  • [6] Lucena Gomez G(2011)New supergravities with central charges and Killing spinors in (2+1)-dimensions JHEP 03 120-undefined
  • [7] Park J(2005)Off-shell supergravity-matter couplings in three dimensions Class. Quant. Grav. 22 2167-undefined
  • [8] Rey S-J(2011)The Supermembrane revisited JHEP 09 101-undefined
  • [9] Kaku M(2011)D = 3, N = 8 conformal supergravity and the Dragon window JHEP 07 071-undefined
  • [10] Townsend P(2012)Maximal supergravity in three dimensions: supergeometry and differential forms JHEP 06 177-undefined