Continuous frame in Hilbert C∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^{*}$$\end{document}-modules

被引:0
作者
Mohamed Rossafi
M’hamed Ghiati
Mohammed Mouniane
Frej Chouchene
Abdeslam Touri
Samir Kabbaj
机构
[1] Dhar el Mahraz University Sidi Mohamed Ben Abdellah,LaSMA Laboratory, Department of Mathematics, Faculty of Sciences
[2] University Ibn Tofail,Laboratory Analysis, Geometry and Applications, Department of Mathematics, Faculty of Sciences
[3] University of Sousse,Department of Mathematics, Higher School of Schiences and Technology of Hammam Sousse
[4] University Ibn Tofail,Department of Mathematics, Faculty of Sciences
关键词
Continuous frame; -Continuous frame; -algebra; Hilbert ; -modules; 41A58; 42C15;
D O I
暂无
中图分类号
学科分类号
摘要
Frame theory is an exciting, dynamic and fast paced subject with applications in numerous fields of mathematics and engineering. In this paper we study Continuous Frame and introduce Continuous Frame with C∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^{*}$$\end{document}-valued bounds. Also, we establich some properties.
引用
收藏
页码:2531 / 2561
页数:30
相关论文
共 39 条
  • [1] Ali ST(1993)Continuous frames in hilbert space Ann. Phys. (N. Y). 222 1-37
  • [2] Antoine JP(2011)-frames in hilbert UPB Sci. Bull. Ser. A Appl. Math. Phys. 73 89-106
  • [3] Gazeau JP(2007)-modules Proc. Am. Math. Soc. 135 469-478
  • [4] Alijani A(2000)On frames for countably generated Hilbert Proc. Am. Math. Soc. 129 1143-1147
  • [5] Dehghan MA(1986)-modules J. Math. Phys. 27 1271-1283
  • [6] Arambašić L(1952)Generalized frames and their redundancy Trans. Am. Math. Soc. 72 341-147
  • [7] Askari-Hemmat A(2003)Painless nonorthogonal expansions Adv. Comput. Math. 18 127-457
  • [8] Dehghan M(1946)A Class of Nonharmonic Fourier Series J. Inst. Electr. Eng. 93 429-468
  • [9] Radjabalipour M(1953)Frames associated with measurable spaces Am. J. Math. 75 839-182
  • [10] Daubechies I(2019)Theory of communications Int. J. Anal. Appl. 182 443-52