Springback compensation in deep drawing applications : AAA new methodology for automatic die compensation through a suitable optimization

被引:13
作者
Cimolin F. [1 ,2 ]
Vadori R. [1 ]
Canuto C. [2 ]
机构
[1] Centro Ricerche ISDG, Environment Park, Palazzina B2, 10144 Torino
[2] Dipartimento di Matematica, Politecnico di Torino, 10129 Torino
关键词
Applied mechanics; Deep drawing; Optimization; Simulation; Springback compensation;
D O I
10.1007/s11012-008-9117-7
中图分类号
学科分类号
摘要
This work deals with the problem of springback compensation in sheet metal forming. Satisfactory results can be achieved by performing "die compensation": the die is modified pretending to obtain a different configuration at the end of the punch stroke, but in order that the final piece coincides with the desired one after the deformation due to springback. Empirical die compensation has nowadays been replaced by numerical simulation, but the inverse problem that needs to be solved is non-trivial since the transformation from the modified geometry of the die and the final piece obtained from it implies a very complex FEM simulation. In this work we set the whole process of springback compensation on solid physical and mathematical grounds. An optimization algorithm based on the Gauss-Newton method is proposed to deliver automatic die compensation and its performance is investigated on some test cases. © 2008 Springer Science+Business Media B.V.
引用
收藏
页码:101 / 113
页数:12
相关论文
共 27 条
[1]  
Hu S.J., Duncan J.L., Marciniak Z., Mechanics of Sheet Metal Forming, (2005)
[2]  
Yuqi L., Ping H., Jincheng W., Springback simulation and analysis of strong anisotropic sheet metals in U-channel bending process, Acta Mech Sin (Engl Ser), 18, 3, (2002)
[3]  
Campana F., Cortese L., Sviluppo di un modello costitutivo per l'analisi FEM del ritorno elastico di componenti in lamiera sottile alto resistenziale, Associazione Italiana per l'Analisi Delle Sollecitazioni-XXXIV Convegno Nazionale, (2005)
[4]  
Hill R., The Mathematical Theory of Plasticity, (1998)
[5]  
Mendelson A., Plasticity: Theory and Application, (1968)
[6]  
Buranathiti T., Cao J., An effective analytical model for springback prediction in straight flanging processes, Int J Mater Prod Technol, 21, pp. 137-153, (2004)
[7]  
Maker B.N., Zhu X., Input Parameters for Metal Forming Simulation Using LS-DYNA, (2000)
[8]  
Maker B.N., Zhu X., Input Parameters for Springback Simulation Using LS-DYNA, (2001)
[9]  
Maker B.N., Zhu X., A Procedure for Springback Analysis Using LS-DYNA, (2003)
[10]  
LS-DYNA Theoretical Manual, (1998)