Convergence and Superconvergence Analysis of a Nonconforming Finite Element Variable-Time-Step BDF2 Implicit Scheme for Linear Reaction-Diffusion Equations

被引:0
作者
Lifang Pei
Yifan Wei
Chaofeng Zhang
Jiwei Zhang
机构
[1] Zhengzhou University,School of Mathematics and Statistics
[2] Wuhan University,School of Mathematics and Statistics
[3] Wuhan University,School of Mathematics and Statistics, and Hubei Key Laboratory of Computational Science
来源
Journal of Scientific Computing | 2024年 / 98卷
关键词
Variable-time-step; BDF2; FEMs; Nonconforming element; Optimal error estimate; Superclose; Superconvergence; 35Q99; 65M06; 65M12; 74A50;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, an effective fully-discrete implicit scheme for solving linear reaction-diffusion equations is constructed by using the variable-time-step two-step backward differentiation formula (VSBDF2) in time combining with the nonconforming finite element methods in space. By introducing a modified energy projection operator, a discrete Laplace operator, the discrete orthogonal convolution kernels, we obtain the optimal and sharp error estimates of order O(h2+τ2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(h^2+\tau ^2)$$\end{document} in L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document}-norm and O(h+τ2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(h+\tau ^2)$$\end{document} in H1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^1$$\end{document}-norm under a mild restriction 0<rk<rmax≈4.8645\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<r_k< r_{\max }\approx 4.8645$$\end{document} for the ratio of adjacent time steps rk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_k$$\end{document}. Furthermore, with the help of a modified discrete Grönwall inequality and the combination technique of interpolation and projection operators, we achieved the superclose result between the interpolation function Ihu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_hu$$\end{document} and finite element solution uh\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_h$$\end{document} in H1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^1$$\end{document}-norm of order O(h2+τ2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(h^2+\tau ^2)$$\end{document}, which together with the interpolation postprocessing operator Π2h\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Pi _{2h}$$\end{document} leads to the global superconvergence result about u-Π2huh\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u-\Pi _{2h}u_h$$\end{document} in H1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^1$$\end{document}-norm of order O(h2+τ2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(h^2+\tau ^2)$$\end{document}. Finally, numerical tests are provided to verify the theoretical analysis.
引用
收藏
相关论文
共 99 条
[1]  
Becker J(1998)A second order backward difference method with variable steps for a parabolic problem BIT Numer. Math. 38 644-662
[2]  
Brenner S(1996)Two-level additive Schwarz preconditioners for nonconforming finite element methods Math. Comput. 65 897-921
[3]  
Carstensen C(2017)Nonconforming FEM for the obstacle problem IMA J. Numer. Anal. 37 64-93
[4]  
Köhler K(2004)Anisotropic interpolation and quasi-Wilson element for narrow quadrilateral meshes IMA J. Numer. Anal. 24 77-95
[5]  
Chen S(2019)A second order BDF numerical scheme with variable steps for the Cahn–Hilliard equation SIAM J. Numer. Anal. 57 495-525
[6]  
Shi D(2023)A variable time-step IMEX-BDF2 SAV scheme and its sharp error estimate for the Navier–Stokes equations ESAIM: Math. Model. Numer. Anal. 57 1143-1170
[7]  
Zhao Y(2022)Sharp error estimate of an implicit BDF2 scheme with variable time steps for the phase field crystal model J. Sci. Comput. 92 1-21
[8]  
Chen W(2005)Stability and error of the variable two-step BDF for semilinear parabolic problems J. Appl. Math. Comput. 19 33-55
[9]  
Wang X(2014)Lower bounds for eigenvalues of elliptic operators: by nonconforming finite element methods J. Sci. Comput. 61 196-221
[10]  
Yan Y(2005)Constrained nonconforming rotated Math. Numer. Sin. Chin. Ed. 27 311-1470