In this paper we deal with two geometric problems arising from heterogeneous parallel computing: how to partition the unit square into p rectangles of given area s1, s2, . . . ,sp (such that Σi=1p si = 1 ), so as to minimize either (i) the sum of the p perimeters of the rectangles or (ii) the largest perimeter of the p rectangles? For both problems, we prove NP-completeness and we introduce a 7/4 -approximation algorithm for (i) and a \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document} $(2/\sqrt{3})$ \end{document} -approximation algorithm for (ii).