On sufficient conditions for the existence of a fuchsian equation with prescribed monodromy

被引:1
作者
Bolibrukh A.A. [1 ]
机构
[1] Steklov Mathematical Institute, Russian Academy of Sciences, Moscow
关键词
Fuchsian system; Monodromy; Semistability; Vector bundle;
D O I
10.1023/A:1021735104618
中图分类号
学科分类号
摘要
Recent sufficient conditions for positive solvability of the Riemann-Hilbert problem, known and new, are presented. © 1999 Kluwer Academic/Plenum Publishers.
引用
收藏
页码:453 / 472
页数:19
相关论文
共 17 条
[1]  
Anosov D.V., Bolibrukh A.A., The Riemann-Hilbert problem, Aspects of Mathematics, (1994)
[2]  
Bolibrukh A.A., The Riemann-Hilbert problem on the complex projective line. (Russian), Math. Notes, 46, 3, pp. 118-120, (1989)
[3]  
The Riemann-Hilbert problem. (Russian), Math. Surv., 452, 2, pp. 1-47, (1990)
[4]  
Fuchsian systems with reducible monodromy and the Riemann-Hilbert problem. In: Nelineinye operatory v global'nom analise, Voronezh Gos. Univ., pp. 3-19, (1991)
[5]  
Led. Notes Math., 1520, pp. 139-155, (1992)
[6]  
On sufficient conditions for the positive solvability of the Riemann-Hilbert problem, Math. Notes Acad. Sci. USSR, 51, 2, pp. 110-117, (1992)
[7]  
The 21st Hubert problem for linear Fuchsian systems, Proc. Steklov Inst. Math., 206, (1994)
[8]  
The Riemann-Hilbert problem and Fuchsian differential equations on the Riemann sphere, Proc. Intern. Congr. Math. Zurich, 1994, pp. 1159-1168, (1995)
[9]  
Deligne P., Equations différentielles à points singuliers réguliers, Lect. Notes Math., 163, (1970)
[10]  
Gantz C., Steer B., Gauge fixing for logarithmic connections over curves and the Riemann-Hilbert problem, Math. Inst., (1995)