Analysis of the global relation for the nonlinear Schrödinger equation on the half-line

被引:67
作者
A. Boutet de Monvel
A. S. Fokas
D. Shepelsky
机构
[1] Institut de Mathematiques de Jussieu, Université Paris 7, 75251 Paris
[2] Dept. of Appl. Math./Theor. Phys., University of Cambridge
关键词
Gelfand-Levitan-Marchenko representation; Global relation; Half-line; Initial-boundary value problem; Nonlinear Schrödinger equation;
D O I
10.1023/B:MATH.0000010711.66380.77
中图分类号
学科分类号
摘要
It has been shown recently that the unique, global solution of the Dirichlet problem of the nonlinear Schrödinger equation on the half-line can be expressed through the solution of a 2 × 2 matrix Riemann-Hilbert problem. This problem is specified by the spectral functions {a(k), b(k)} which are defined in terms of the initial condition q(x, 0) = q0(x), and by the spectral functions {A(k), b(k)} which are defined in terms of the specified boundary condition q(0, t) = g0(t) and the unknown boundary value qx(0, t) = g1(t). Furthermore, it has been shown that given q0 and g0, the function g1 can be characterized through the solution of a certain 'global relation' coupling q0, g0, g1, and Φ(t, k), where Φ satisfies the t-part of the associated Lax pair evaluated at x = 0. We show here that, by using a Gelfand-Levitan-Marchenko triangular representation of φ, the global relation can be explicitly solved for g1.
引用
收藏
页码:199 / 212
页数:13
相关论文
共 7 条
[1]  
Boutet De Monvel A., Kotlyarov V., Scattering problem for the Zakharov-Shabat equations on the semi-axis, Inverse Problems, 16, 6, pp. 1813-1837, (2000)
[2]  
Degasperis A., Manakov S.V., Santini P.M., On the initial-boundary value problems for soliton equations, JETP Lett., 74, 10, pp. 481-485, (2001)
[3]  
Fokas A.S., Integrable-nonlinear evolution equations on the half-line, Comm. Math. Phys., 230, 1, pp. 1-39, (2002)
[4]  
Fokas A.S., A new transform method for evolution partial differential equations, IMA J. Appl. Math., 67, 6, pp. 559-590, (2002)
[5]  
Fokas A.S., Inverse scattering transform on the half-line - The nonlinear analogue of the sine transform, Inverse Problems: An Interdisciplinary Study, (1986)
[6]  
Adv. Electron. Electron Phys., SUPPL. 19, pp. 409-422, (1987)
[7]  
Fokas A.S., Its A.R., Sung L.-Y., The Nonlinear Schrodinger Equation on the Half-line"