Non-existence of polyhedral immersions of triangulated surfaces in R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb R^3$$\end{document}

被引:0
作者
Undine Leopold
机构
[1] Technische Universität Chemnitz,
[2] Fakultät für Mathematik,undefined
来源
Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry | 2017年 / 58卷 / 2期
关键词
Non-orientable surface; Triangulation; Geometric realization; Polyhedral immersion; Self-intersection; Obstruction; Neighborly; 52B70; 57M20;
D O I
10.1007/s13366-016-0319-1
中图分类号
学科分类号
摘要
We present and apply a method for disproving the existence of polyhedral immersions in R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb R^3$$\end{document} of certain triangulations on non-orientable surfaces. In particular, it is proved that neither of the two vertex-minimal, neighborly 9-vertex triangulations of the non-orientable surface of genus 5 are realizable as immersed polyhedral surfaces in R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb R^3$$\end{document}.
引用
收藏
页码:247 / 265
页数:18
相关论文
共 4 条
[1]  
Banchoff TF(1974)Triple points and surgery of immersed surfaces Proc. Am. Math. Soc. 46 407-413
[2]  
Császár Á(1949)A polyhedron without diagonals Acta Univ. Szeged. Sect. Sci. Math. 13 140-142
[3]  
Heawood P(1890)Map colour theorem Q. J. Math. 24 332-338
[4]  
Ringel G(1955)Wie man die geschlossenen nichtorientierbaren Flächen in möglichst wenig Dreiecke zerlegen kann Math. Ann. 130 317-326