Principal component analysis with interval imputed missing values

被引:0
作者
Paola Zuccolotto
机构
[1] University of Brescia,Quantitative Methods Department
来源
AStA Advances in Statistical Analysis | 2012年 / 96卷
关键词
Missing values; Interval data; Symbolic data analysis; Principal component analysis;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper some statistical properties of Interval Imputation are derived in the context of Principal Component Analysis. Interval Imputation is a recent proposal for the treatment of missing values, consisting of replacing blanks with intervals and then analyzing the resulting data matrix using Symbolic Data Analysis techniques. The most noticeable virtue of this method is that it does not require a single-valued imputation, so it allows us to take into account that incomplete observations are affected by a degree of uncertainty. Illustrative examples and simulation studies are carried out in order to illustrate the functioning of the technique.
引用
收藏
页码:1 / 23
页数:22
相关论文
共 46 条
  • [1] Billard L.(2003)From the statistics of data to the statistics of knowledge: symbolic data analysis J. Am. Stat. Assoc. 98 470-487
  • [2] Diday E.(1997)Extension de l’analyse en composantes principales à des données de type intervalle Rev. Stat. Appl. 45 5-24
  • [3] Cazes P.(1987)Vertex method for computing functions of fuzzy variables Fuzzy Sets Syst. 24 65-78
  • [4] Chouakria A.(2004)A least squares approach to principal component analysis for interval valued data Chemom. Intell. Lab. Syst. 70 179-192
  • [5] Diday E.(1986)Partial least squares regression: a tutorial Anal. Chim. Acta 185 1-17
  • [6] Schektman Y.(2006)Principal component analysis of interval data Comput. Stat. 21 343-363
  • [7] Dong W.(1995)Dimensionality reduction of symbolic data Pattern Recognit. Lett. 16 219-223
  • [8] Shah H.C.(1998)Missing values in principal component analysis Chemom. Intell. Lab. Syst. 42 125-139
  • [9] D’Urso P.(1954)Some necessary conditions for common factor analysis Psychometrika 19 149-161
  • [10] Giordani P.(1968)Missing data in regression analysis J. R. Stat. Soc. B 30 67-82