Positive solutions for an oscillator fractional initial value problem

被引:0
作者
Amar Chidouh
Assia Guezane-Lakoud
Rachid Bebbouchi
机构
[1] Houari Boumedienne University,Laboratory of Dynamic Systems
[2] Badji Mokhtar-Annaba University,Laboratory of Advanced Materials
来源
Journal of Applied Mathematics and Computing | 2017年 / 54卷
关键词
Fractional differential equations; Volterra integral equation; Initial value problem; Laplace transform; Mittag-Leffler function; Fixed point theorem; 34A08; 34A12; 26A33;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we will study a fractional initial value problem. By using Laplace transform, we obtain an equivalent fixed point problem, that is a Volterra integral equation involving the generalized Mittag-Leffler function in the kernel. The existence results are obtained by some fixed point theorems.
引用
收藏
页码:57 / 68
页数:11
相关论文
共 21 条
[1]  
Bai Z(2005)Positive solutions for boundary value problem of nonlinear fractional differential equation J. Math. Anal. Appl. 311 495-505
[2]  
Lü H(2008)Existence, multiplicity, and dependence on a parameter for a periodic boundary value problem J. Differ. Equ. 245 1185-1197
[3]  
Graef JR(2008)A periodic boundary value problem with vanishing Green’s function Appl. Math. Lett. 21 176-180
[4]  
Kong L(2015)Initial value problem of fractional order Cogent Math. 2 1004,797-854
[5]  
Wang H(2013)New existence results of positive solution for a class of nonlinear fractional differential equations Acta Math. Sci. Ser. B Engl. Ed. 33 847-306
[6]  
Graef JR(2003)On the number of positive solutions of nonlinear systems J. Math. Anal. Appl. 281 287-115
[7]  
Kong L(2006)Eigenvalue criteria for existence of multiple positive solutions of nonlinear boundary value problems of local and nonlocal type Topol. Methods Nonlinear Anal. 27 91-1378
[8]  
Wang H(2009)Multiple positive solutions of resonant and non-resonant nonlocal boundary value problems Nonlinear Anal. 71 1369-718
[9]  
Guezane-Lakoud A(2014)Existence of positive solutions for a class of nonlinear fractional differential equations with integral boundary conditions and a parameter Appl. Math. Comput. 226 708-107
[10]  
Li N(2003)On existence and multiplicity of positive solutions to periodic boundary value problems for singular nonlinear second order differential equations J. Math. Anal. Appl. 281 99-undefined