Generalized quaternionic manifolds

被引:0
作者
Radu Pantilie
机构
[1] Institutul de Matematică “Simion Stoilow” al Academiei Române,
来源
Annali di Matematica Pura ed Applicata | 2014年 / 193卷
关键词
Quaternionic manifold; Generalized complex structure; Twistor space; 53D18; 53C26; 53C28;
D O I
暂无
中图分类号
学科分类号
摘要
We initiate the study of the generalized quaternionic manifolds by classifying the generalized quaternionic vector spaces, and by giving two classes of nonclassical examples of such manifolds. Thus, we show that any complex symplectic manifold is endowed with a natural (nonclassical) generalized quaternionic structure, and the same applies to the heaven space of any three-dimensional Einstein–Weyl space. In particular, on the product \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Z$$\end{document} of any complex symplectic manifold \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M$$\end{document} and the sphere, there exists a natural generalized complex structure, with respect to which \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Z$$\end{document} is the twistor space of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M$$\end{document}.
引用
收藏
页码:633 / 641
页数:8
相关论文
共 10 条
[1]  
Baird P(2009)Harmonic morphisms on heaven spaces Bull. Lond. Math. Soc. 41 198-204
[2]  
Pantilie R(2007)Generalized hyper-Kähler geometry and supersymmetry Nucl. Phys. B 773 172-183
[3]  
Bredthauer A(1990)Dirac manifolds Trans. Am. Math. Soc. 319 631-661
[4]  
Courant TJ(2010)Twistorial maps between quaternionic manifolds Ann. Sc. Norm. Super. Pisa Cl. Sci. 9 47-67
[5]  
Ianuş S(2011)On holomorphic maps and generalized complex geometry J. Geom. Phys. 61 1502-1515
[6]  
Marchiafava S(undefined)undefined undefined undefined undefined-undefined
[7]  
Ornea L(undefined)undefined undefined undefined undefined-undefined
[8]  
Pantilie R(undefined)undefined undefined undefined undefined-undefined
[9]  
Ornea L(undefined)undefined undefined undefined undefined-undefined
[10]  
Pantilie R(undefined)undefined undefined undefined undefined-undefined