The hyper-Zagreb index and some graph operations

被引:0
作者
Wei Gao
Muhammad Kamran Jamil
Mohammad Reza Farahani
机构
[1] Yunnan Normal University,School of Information Science and Technology
[2] Riphah International University,Department of Mathematics, Riphah Institute of Computing and Applied Sciences (RICAS)
[3] Department of Applied Mathematics of Iran University of Science and Technology (IUST),undefined
来源
Journal of Applied Mathematics and Computing | 2017年 / 54卷
关键词
The hyper-Zagreb index; Graph operations; nanotube; Rectangular grid; Primary: 05C76; Secondary: 05C90; 13;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a simple connected graph. The Hyper-Zagreb index is defined as HM(G)=∑uv∈EG(dG(u)+dG(v))2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textit{HM}(G)=\sum _{uv\in E_{G}}(d_{G}(u)+d_{G}(v))^2$$\end{document}. In this paper some exact expressions for the hyper-Zagreb index of graph operations containing cartesian product and join of n graphs, splice, link and chain of graphs will be presented. We also apply these results to some graphs to chemical and general interest, such as C4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_4$$\end{document} nanotube, rectangular grid, prism, complete n-partite graph.
引用
收藏
页码:263 / 275
页数:12
相关论文
共 34 条
  • [1] Shirdel GH(2013)The hyper Zagreb index of graph operations Iran. J. Math. Chem. 4 213-220
  • [2] Rezapour H(1972)Graph theory and molecular orbitals, Total Chem. Phys. Lett. 17 535-538
  • [3] Sayadi AM(2004)-electron energy of alternant hydrocarbons Mol. Divers. 8 393-399
  • [4] Gutman I(2005)On reformulated Zagreb indices MATCH Commun. Math. Comput. Chem. 54 163-176
  • [5] Trinajstić N(2004)Similarity of molecular descriptors: the equivalence of Zagreb indices and walk counts MATCH Commun. Math. Comput. Chem. 50 83-92
  • [6] Miličević A(2004)The first Zagreb index 30 years after MATCH Commun. Math. Comput. Chem. 52 113-118
  • [7] Nikolić S(2009)Zagreb indices Discrete Appl. Math. 157 804-811
  • [8] Trinajstić N(2016)The first and second Zagreb indices of some graph operations Iran. J. Math. Chem. 7 89-92
  • [9] Braun J(2005)A note on Hyper-Zagreb index of graph operations Graph Theory Notes N. Y. 48 47-55
  • [10] Kerber A(2008)Splices, links and their degree-weighted Wiener polynomials Comput. Math. Appl. 56 1402-1407