Separating Fourier and Schur Multipliers

被引:0
|
作者
Cédric Arhancet
Christoph Kriegler
Christian Le Merdy
Safoura Zadeh
机构
[1] Université Clermont Auvergne,
[2] CNRS,undefined
[3] LMBP,undefined
[4] Laboratoire de Mathématiques de Besançon,undefined
[5] UMR 6623,undefined
[6] CNRS,undefined
[7] Université Bourgogne Franche-Comté,undefined
来源
Journal of Fourier Analysis and Applications | 2024年 / 30卷
关键词
Fourier multipliers; Schur multipliers; Noncommutative ; -spaces; Isometries; Primary 46L51; secondary 43A15; 46B04;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a locally compact unimodular group, let 1≤p<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le p<\infty $$\end{document}, let ϕ∈L∞(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi \in L^\infty (G)$$\end{document} and assume that the Fourier multiplier Mϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_\phi $$\end{document} associated with ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document} is bounded on the noncommutative Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document}-space Lp(VN(G))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p(VN(G))$$\end{document}. Then MϕLp(VN(G))→Lp(VN(G))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_\phi L^p(VN(G))\rightarrow L^p(VN(G))$$\end{document} is separating (that is, {a∗b=ab∗=0}⇒{Mϕ(a)∗Mϕ(b)=Mϕ(a)Mϕ(b)∗=0}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{a^*b=ab^*=0\}\Rightarrow \{M_\phi (a)^* M_\phi (b)=M_\phi (a)M_\phi (b)^*=0\}$$\end{document} for any a,b∈Lp(VN(G))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a,b\in L^p(VN(G))$$\end{document}) if and only if there exists c∈C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c\in {\mathbb {C}}$$\end{document} and a continuous character ψG→C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi G\rightarrow {\mathbb {C}}$$\end{document} such that ϕ=cψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi =c\psi $$\end{document} locally almost everywhere. This provides a characterization of isometric Fourier multipliers on Lp(VN(G))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p(VN(G))$$\end{document}, when p≠2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\not =2$$\end{document}. Next, let Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} be a σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document}-finite measure space, let ϕ∈L∞(Ω2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi \in L^\infty (\Omega ^2)$$\end{document} and assume that the Schur multiplier associated with ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document} is bounded on the Schatten space Sp(L2(Ω))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S^p(L^2(\Omega ))$$\end{document}. We prove that this multiplier is separating if and only if there exist a constant c∈C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c\in {\mathbb {C}}$$\end{document} and two unitaries α,β∈L∞(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha ,\beta \in L^\infty (\Omega )$$\end{document} such that ϕ(s,t)=cα(s)β(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi (s,t) =c\, \alpha (s)\beta (t)$$\end{document} a.e. on Ω2.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega ^2.$$\end{document} This provides a characterization of isometric Schur multipliers on Sp(L2(Ω))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S^p(L^2(\Omega ))$$\end{document}, when p≠2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\not =2$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [41] FOURIER MULTIPLIERS VIA TWISTED CONVOLUTION
    Maity, Arup kumar
    Ratnakumar, P. K.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2025, 153 (03) : 1145 - 1154
  • [42] Linear Peridynamics Fourier Multipliers and Eigenvalues
    Alali B.
    Albin N.
    Journal of Peridynamics and Nonlocal Modeling, 2024, 6 (2) : 294 - 317
  • [43] A class of Fourier multipliers for modulation spaces
    Bényi, A
    Grafakos, L
    Gröchenig, K
    Okoudjou, K
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2005, 19 (01) : 131 - 139
  • [44] ON A GENERALIZATION OF THE LIZORKIN THEOREM ON FOURIER MULTIPLIERS
    Sarybekova, L. O.
    Tararykova, T. V.
    Tleukhanova, N. T.
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2010, 13 (03): : 613 - 624
  • [45] Markov dilations of semigroups of Fourier multipliers
    Cédric Arhancet
    Positivity, 2022, 26
  • [46] Radial Fourier multipliers in high dimensions
    Heo, Yaryong
    Nazarov, Fedor
    Seeger, Andreas
    ACTA MATHEMATICA, 2011, 206 (01) : 55 - 92
  • [47] Weighted estimates for conic Fourier multipliers
    Cordoba, Antonio
    Rogers, Keith M.
    MATHEMATISCHE ZEITSCHRIFT, 2014, 278 (1-2) : 431 - 440
  • [48] Homeomorphic changes of variable and Fourier multipliers
    Lebedev, Vladimir
    Olevskii, Alexander
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 481 (02)
  • [49] Fourier multipliers for nonlocal Laplace operators
    Alali, Bacim
    Albin, Nathan
    APPLICABLE ANALYSIS, 2021, 100 (12) : 2526 - 2546
  • [50] Hardy-Littlewood-Paley inequalities and Fourier multipliers on SU(2)
    Akylzhanov, Rauan
    Nursultanov, Erlan
    Ruzhansky, Michael
    STUDIA MATHEMATICA, 2016, 234 (01) : 1 - 29