Separating Fourier and Schur Multipliers

被引:0
|
作者
Cédric Arhancet
Christoph Kriegler
Christian Le Merdy
Safoura Zadeh
机构
[1] Université Clermont Auvergne,
[2] CNRS,undefined
[3] LMBP,undefined
[4] Laboratoire de Mathématiques de Besançon,undefined
[5] UMR 6623,undefined
[6] CNRS,undefined
[7] Université Bourgogne Franche-Comté,undefined
来源
Journal of Fourier Analysis and Applications | 2024年 / 30卷
关键词
Fourier multipliers; Schur multipliers; Noncommutative ; -spaces; Isometries; Primary 46L51; secondary 43A15; 46B04;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a locally compact unimodular group, let 1≤p<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le p<\infty $$\end{document}, let ϕ∈L∞(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi \in L^\infty (G)$$\end{document} and assume that the Fourier multiplier Mϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_\phi $$\end{document} associated with ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document} is bounded on the noncommutative Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document}-space Lp(VN(G))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p(VN(G))$$\end{document}. Then MϕLp(VN(G))→Lp(VN(G))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_\phi L^p(VN(G))\rightarrow L^p(VN(G))$$\end{document} is separating (that is, {a∗b=ab∗=0}⇒{Mϕ(a)∗Mϕ(b)=Mϕ(a)Mϕ(b)∗=0}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{a^*b=ab^*=0\}\Rightarrow \{M_\phi (a)^* M_\phi (b)=M_\phi (a)M_\phi (b)^*=0\}$$\end{document} for any a,b∈Lp(VN(G))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a,b\in L^p(VN(G))$$\end{document}) if and only if there exists c∈C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c\in {\mathbb {C}}$$\end{document} and a continuous character ψG→C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi G\rightarrow {\mathbb {C}}$$\end{document} such that ϕ=cψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi =c\psi $$\end{document} locally almost everywhere. This provides a characterization of isometric Fourier multipliers on Lp(VN(G))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p(VN(G))$$\end{document}, when p≠2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\not =2$$\end{document}. Next, let Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} be a σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document}-finite measure space, let ϕ∈L∞(Ω2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi \in L^\infty (\Omega ^2)$$\end{document} and assume that the Schur multiplier associated with ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document} is bounded on the Schatten space Sp(L2(Ω))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S^p(L^2(\Omega ))$$\end{document}. We prove that this multiplier is separating if and only if there exist a constant c∈C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c\in {\mathbb {C}}$$\end{document} and two unitaries α,β∈L∞(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha ,\beta \in L^\infty (\Omega )$$\end{document} such that ϕ(s,t)=cα(s)β(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi (s,t) =c\, \alpha (s)\beta (t)$$\end{document} a.e. on Ω2.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega ^2.$$\end{document} This provides a characterization of isometric Schur multipliers on Sp(L2(Ω))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S^p(L^2(\Omega ))$$\end{document}, when p≠2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\not =2$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [21] Markov dilations of semigroups of Fourier multipliers
    Arhancet, Cedric
    POSITIVITY, 2022, 26 (05)
  • [22] SCHUR MULTIPLIERS AND SPHERICAL FUNCTIONS ON HOMOGENEOUS TREES
    Haagerup, U.
    Steenstrup, T.
    Szwarc, R.
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2010, 21 (10) : 1337 - 1382
  • [23] ON A CLASS OF LINEAR OPERATORS ON lP AND ITS SCHUR MULTIPLIERS
    Marcoci, Anca-Nicoleta
    Persson, Lars-Erik
    PROCEEDINGS OF THE ROMANIAN ACADEMY SERIES A-MATHEMATICS PHYSICS TECHNICAL SCIENCES INFORMATION SCIENCE, 2016, 17 (02): : 101 - 108
  • [24] STABLE SAMPLING AND FOURIER MULTIPLIERS
    Matei, Basarab
    Meyer, Yves
    Ortega-Cerda, Joaquim
    PUBLICACIONS MATEMATIQUES, 2014, 58 (02) : 341 - 351
  • [25] Fourier multipliers and transfer operators
    Pollicott, Mark
    JOURNAL OF FRACTAL GEOMETRY, 2021, 8 (02) : 189 - 199
  • [26] Fourier Multipliers and Dirac Operators
    Nolder, Craig A.
    Wang, Guanghong
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2017, 27 (02) : 1647 - 1657
  • [27] FOURIER MULTIPLIERS IN SLn (R)
    Parcet, Javier
    Ricard, Eric
    De La Salle, Mikael
    DUKE MATHEMATICAL JOURNAL, 2022, 171 (06) : 1235 - 1297
  • [28] On Radial and Conical Fourier Multipliers
    Heo, Yaryong
    Nazarov, Fedor
    Seeger, Andreas
    JOURNAL OF GEOMETRIC ANALYSIS, 2011, 21 (01) : 96 - 117
  • [29] Uncertainty Principles for Fourier Multipliers
    Northington, Michael V.
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2020, 26 (05)
  • [30] Fourier Multipliers and Dirac Operators
    Craig A. Nolder
    Guanghong Wang
    Advances in Applied Clifford Algebras, 2017, 27 : 1647 - 1657