On a Coloring Conjecture of Hajós

被引:0
作者
Yuqin Sun
Xingxing Yu
机构
[1] Shanghai University of Electric Power,School of Mathematics and Physics
[2] Georgia Institute of Technology,School of Mathematics
来源
Graphs and Combinatorics | 2016年 / 32卷
关键词
Coloring; Subdivision of graph; Independent paths; Planar graph; 05C15; 05C38; 05C40; 05C75;
D O I
暂无
中图分类号
学科分类号
摘要
Hajós conjectured that graphs containing no subdivision of K5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_5$$\end{document} are 4-colorable. It is shown in Yu and Zickfeld (J Comb Theory Ser B 96:482–492, 2006) that if there is a counterexample to this conjecture then any minimum such counterexample must be 4-connected. In this paper, we further show that if G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} is a minimum counterexample to Hajós’ conjecture and S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S$$\end{document} is a 4-cut in G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} then G-S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G-S$$\end{document} has exactly two components.
引用
收藏
页码:351 / 361
页数:10
相关论文
共 50 条
  • [41] Maximum face-constrained coloring of plane graphs
    Ramamurthi, R
    West, DB
    DISCRETE MATHEMATICS, 2004, 274 (1-3) : 233 - 240
  • [42] On Maximal Cycles or Triangular Planar Polygonal Graphs and Their Coloring
    Jara-Vera, Vicente
    Sanchez-Avila, Carmen
    INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2021, 16 (01) : 185 - 197
  • [43] [r, s, t]-Coloring of K-n,K-n
    Xu, Changqing
    Ma, Xianli
    Hua, Shouliang
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2009, 31 (1-2) : 45 - 50
  • [44] About S-packing coloring of 3-irregular subcubic graphs
    Mortada, Maidoun
    DISCRETE APPLIED MATHEMATICS, 2024, 359 : 16 - 18
  • [45] Spherical fullerene graphs that do not satisfy Andova and Skrekovski's conjecture
    Silva, Thiago M. D.
    Nicodemos, Diego S.
    Dantas, Simone
    XII LATIN-AMERICAN ALGORITHMS, GRAPHS AND OPTIMIZATION SYMPOSIUM, LAGOS 2023, 2023, 224 : 316 - 324
  • [46] A step towards the strong version of Havel's three color conjecture
    Borodin, O. V.
    Glebov, A. N.
    Jensen, T. R.
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2012, 102 (06) : 1295 - 1320
  • [47] An Approximate Version of Hadwiger's Conjecture for Claw-Free Graphs
    Chudnovsky, Maria
    Fradkin, Alexandra Ovetsky
    JOURNAL OF GRAPH THEORY, 2010, 63 (04) : 259 - 278
  • [48] Three-coloring planar graphs without short cycles
    Chen, Min
    Raspaud, Andre
    Wang, Weifan
    INFORMATION PROCESSING LETTERS, 2007, 101 (03) : 134 - 138
  • [49] Adynamic coloring of graphs
    Surimova, Maria
    Luzar, Borut
    Madaras, Tomas
    DISCRETE APPLIED MATHEMATICS, 2020, 284 : 224 - 233
  • [50] On the optimality of coloring with a lattice
    Ben-Haim, Y
    Etzion, T
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2005, 18 (04) : 844 - 878