On a Coloring Conjecture of Hajós

被引:0
作者
Yuqin Sun
Xingxing Yu
机构
[1] Shanghai University of Electric Power,School of Mathematics and Physics
[2] Georgia Institute of Technology,School of Mathematics
来源
Graphs and Combinatorics | 2016年 / 32卷
关键词
Coloring; Subdivision of graph; Independent paths; Planar graph; 05C15; 05C38; 05C40; 05C75;
D O I
暂无
中图分类号
学科分类号
摘要
Hajós conjectured that graphs containing no subdivision of K5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_5$$\end{document} are 4-colorable. It is shown in Yu and Zickfeld (J Comb Theory Ser B 96:482–492, 2006) that if there is a counterexample to this conjecture then any minimum such counterexample must be 4-connected. In this paper, we further show that if G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} is a minimum counterexample to Hajós’ conjecture and S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S$$\end{document} is a 4-cut in G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} then G-S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G-S$$\end{document} has exactly two components.
引用
收藏
页码:351 / 361
页数:10
相关论文
共 50 条
  • [31] Further results and questions on S-packing coloring of subcubic graphs
    Mortada, Maidoun
    Togni, Olivier
    DISCRETE MATHEMATICS, 2025, 348 (04)
  • [32] Coloring octrees
    Adamy, Udo
    Hoffmann, Michael
    Solymosi, Jozsef
    Stojakovic, Milos
    THEORETICAL COMPUTER SCIENCE, 2006, 363 (01) : 11 - 17
  • [33] FINITARY COLORING
    Holroyd, Alexander E.
    Schramm, Oded
    Wilson, David B.
    ANNALS OF PROBABILITY, 2017, 45 (05) : 2867 - 2898
  • [34] A Generalization of Some Results on List Coloring and DP-Coloring
    Nakprasit, Keaitsuda Maneeruk
    Nakprasit, Kittikorn
    GRAPHS AND COMBINATORICS, 2020, 36 (04) : 1189 - 1201
  • [35] Exploring the complexity boundary between coloring and list-coloring
    Flavia Bonomo
    Guillermo Durán
    Javier Marenco
    Annals of Operations Research, 2009, 169 : 3 - 16
  • [36] Exploring the complexity boundary between coloring and list-coloring
    Bonomo, Flavia
    Duran, Guillermo
    Marenco, Javier
    ANNALS OF OPERATIONS RESEARCH, 2009, 169 (01) : 3 - 16
  • [37] A Generalization of Some Results on List Coloring and DP-Coloring
    Keaitsuda Maneeruk Nakprasit
    Kittikorn Nakprasit
    Graphs and Combinatorics, 2020, 36 : 1189 - 1201
  • [38] Max-Coloring and Online Coloring with Bandwidths on Interval Graphs
    Pemmaraju, Sriram V.
    Raman, Rajiv
    Varadarajan, Kasturi
    ACM TRANSACTIONS ON ALGORITHMS, 2011, 7 (03)
  • [39] Revised Coloring Method of Characters for Presentation Slides and Coloring System
    Nonomura, Yui
    Hochin, Teruhisa
    Nomiya, Hiroki
    Nishizaki, Yukiko
    2017 1ST INTERNATIONAL CONFERENCE ON APPLIED COMPUTER AND COMMUNICATION TECHNOLOGIES (COMCOM), 2017, : 111 - 116
  • [40] k-frugal List Coloring of Sparse Graphs
    Fang Q.
    Zhang L.
    Tongji Daxue Xuebao/Journal of Tongji University, 2022, 50 (12): : 1825 - 1832