On a Coloring Conjecture of Hajós

被引:0
|
作者
Yuqin Sun
Xingxing Yu
机构
[1] Shanghai University of Electric Power,School of Mathematics and Physics
[2] Georgia Institute of Technology,School of Mathematics
来源
Graphs and Combinatorics | 2016年 / 32卷
关键词
Coloring; Subdivision of graph; Independent paths; Planar graph; 05C15; 05C38; 05C40; 05C75;
D O I
暂无
中图分类号
学科分类号
摘要
Hajós conjectured that graphs containing no subdivision of K5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_5$$\end{document} are 4-colorable. It is shown in Yu and Zickfeld (J Comb Theory Ser B 96:482–492, 2006) that if there is a counterexample to this conjecture then any minimum such counterexample must be 4-connected. In this paper, we further show that if G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} is a minimum counterexample to Hajós’ conjecture and S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S$$\end{document} is a 4-cut in G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} then G-S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G-S$$\end{document} has exactly two components.
引用
收藏
页码:351 / 361
页数:10
相关论文
共 50 条
  • [21] [r, s, t]-Coloring of the Joint Graph Cm VCn
    Pan Yumei
    Mo Mingzhong
    2011 30TH CHINESE CONTROL CONFERENCE (CCC), 2011, : 1939 - 1943
  • [22] Graph coloring and Graham's greatest common divisor problem
    Bosek, Bartlomiej
    Doski, Michal
    Grytczuk, Jaroslaw
    Sokol, Joanna
    Sleszyriska-Nowak, Malgorzata
    Zelazny, Wiktor
    DISCRETE MATHEMATICS, 2018, 341 (03) : 781 - 785
  • [23] Some results on Reed's Conjecture about ω, Δ, and χ with respect to α
    Kohl, Anja
    Schiermeyer, Ingo
    DISCRETE MATHEMATICS, 2010, 310 (09) : 1429 - 1438
  • [24] Inflations of anti-cycles and Hadwiger's Conjecture
    Pedersen, Anders Sune
    Plummer, Michael D.
    Toft, Bjarne
    JOURNAL OF COMBINATORICS, 2016, 7 (2-3) : 413 - 421
  • [25] Dominator coloring and CD coloring in almost cluster graphs ☆
    Banik, Aritra
    Kasthurirangan, Prahlad Narasimhan
    Raman, Venkatesh
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2025, 150
  • [26] On the probabilistic minimum coloring and minimum k-coloring
    Murat, U
    Paschos, VT
    DISCRETE APPLIED MATHEMATICS, 2006, 154 (03) : 564 - 586
  • [27] The Kelmans-Seymour conjecture III: 3-vertices in K4-
    He, Dawei
    Wang, Yan
    Yu, Xingxing
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2020, 144 : 265 - 308
  • [28] Dynamic coloring and list dynamic coloring of planar graphs
    Kim, Seog-Jin
    Lee, Sang June
    Park, Won-Jin
    DISCRETE APPLIED MATHEMATICS, 2013, 161 (13-14) : 2207 - 2212
  • [29] The Kelmans-Seymour conjecture II: 2-Vertices in K4-
    He, Dawei
    Wang, Yan
    Yu, Xingxing
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2020, 144 : 225 - 264
  • [30] Equitable defective coloring of sparse planar graphs
    Williams, Lee
    Vandenbussche, Jennifer
    Yu, Gexin
    DISCRETE MATHEMATICS, 2012, 312 (05) : 957 - 962