On a Coloring Conjecture of Hajós

被引:0
|
作者
Yuqin Sun
Xingxing Yu
机构
[1] Shanghai University of Electric Power,School of Mathematics and Physics
[2] Georgia Institute of Technology,School of Mathematics
来源
Graphs and Combinatorics | 2016年 / 32卷
关键词
Coloring; Subdivision of graph; Independent paths; Planar graph; 05C15; 05C38; 05C40; 05C75;
D O I
暂无
中图分类号
学科分类号
摘要
Hajós conjectured that graphs containing no subdivision of K5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_5$$\end{document} are 4-colorable. It is shown in Yu and Zickfeld (J Comb Theory Ser B 96:482–492, 2006) that if there is a counterexample to this conjecture then any minimum such counterexample must be 4-connected. In this paper, we further show that if G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} is a minimum counterexample to Hajós’ conjecture and S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S$$\end{document} is a 4-cut in G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} then G-S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G-S$$\end{document} has exactly two components.
引用
收藏
页码:351 / 361
页数:10
相关论文
共 50 条
  • [1] On a Coloring Conjecture of Hajs']js
    Sun, Yuqin
    Yu, Xingxing
    GRAPHS AND COMBINATORICS, 2016, 32 (01) : 351 - 361
  • [2] A conjecture of Borodin and a coloring of Grunbaum
    Rautenbach, Dieter
    JOURNAL OF GRAPH THEORY, 2008, 58 (02) : 139 - 147
  • [3] Wegner's Conjecture on 2-distance coloring for planar graphs
    Zhu, Junlei
    Bu, Yuehua
    Zhu, Hongguo
    THEORETICAL COMPUTER SCIENCE, 2022, 926 (71-74) : 71 - 74
  • [4] Coloring linear hypergraphs: the Erdős–Faber–Lovász conjecture and the Combinatorial Nullstellensatz
    Oliver Janzer
    Zoltán Lóránt Nagy
    Designs, Codes and Cryptography, 2022, 90 : 1991 - 2001
  • [5] Acyclic Edge Coloring Conjecture Is True on Planar Graphs Without Intersecting Triangles
    Shu, Qiaojun
    Chen, Yong
    Han, Shuguang
    Lin, Guohui
    Miyano, Eiji
    Zhang, An
    THEORY AND APPLICATIONS OF MODELS OF COMPUTATION, TAMC 2020, 2020, 12337 : 426 - 438
  • [6] Acyclic edge coloring conjecture is true on planar graphs without intersecting triangles
    Shu, Qiaojun
    Chen, Yong
    Han, Shuguang
    Lin, Guohui
    Miyano, Eiji
    Zhang, An
    THEORETICAL COMPUTER SCIENCE, 2021, 882 : 77 - 108
  • [7] Reducing Hajos' 4-coloring conjecture to 4-connected graphs
    Yu, XX
    Zickfeld, F
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2006, 96 (04) : 482 - 492
  • [8] Coloring linear hypergraphs: the Erdos-Faber-Lovasz conjecture and the Combinatorial Nullstellensatz
    Janzer, Oliver
    Nagy, Zoltan Lorant
    DESIGNS CODES AND CRYPTOGRAPHY, 2022, 90 (09) : 1991 - 2001
  • [9] A note on Halton's conjecture
    Sykora, O
    Székely, LA
    Vrt'o, I
    INFORMATION SCIENCES, 2004, 164 (1-4) : 61 - 64
  • [10] On Beck's Coloring for Measurable Functions
    Assari, A.
    Rahimi, M.
    IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS, 2021, 16 (02): : 1 - 10