Finite Cyclicity of Some Graphics Through a Nilpotent Point of Saddle Type Inside Quadratic Systems

被引:0
作者
Christiane Rousseau
Chunhua Shan
Huaiping Zhu
机构
[1] University of Montreal,Department of Mathematics and Statistics and CRM
[2] University of Alberta,Department of Mathematical and Statistical Sciences
[3] York University,Department of Mathematics and Statistics
来源
Qualitative Theory of Dynamical Systems | 2016年 / 15卷
关键词
Nilpotent saddle; Graphics; Cyclicity; DRR program; Poincaré first return map; Finiteness part of Hilbert’s 16th problem;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we show the finite cyclicity of the two graphics (I121)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(I_{12}^1)$$\end{document} and (I131)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(I_{13}^1)$$\end{document} through a triple nilpotent point of saddle type inside quadratic vector fields. These results contribute to the program launched in 1994 by Dumortier, Roussarie and Rousseau (DRR program) to show the existence of a uniform upper bound for the number of limit cycles for planar quadratic vector fields.
引用
收藏
页码:237 / 256
页数:19
相关论文
共 10 条
[1]  
Dumortier F(1994)Hilbert’s 16th problem for quadratic vector fields J. Differ. Equations 110 86-133
[2]  
Roussarie R(1994)Elementary graphics of cyclicity 1 and 2 Nonlinearity 7 1001-1043
[3]  
Rousseau C(1999)Genericity conditionsfor finite cyclicity of elementary graphics J. Differ. Equations 155 44-72
[4]  
Dumortier F(2002)Finite cyclicity of graphics with a nilpotent singularity of saddle or elliptic type J. Differ. Equations 178 325-436
[5]  
Roussarie R(undefined)undefined undefined undefined undefined-undefined
[6]  
Rousseau C(undefined)undefined undefined undefined undefined-undefined
[7]  
Guzman A(undefined)undefined undefined undefined undefined-undefined
[8]  
Rousseau C(undefined)undefined undefined undefined undefined-undefined
[9]  
Zhu H(undefined)undefined undefined undefined undefined-undefined
[10]  
Rousseau C(undefined)undefined undefined undefined undefined-undefined