Outlook on ecologically improved composites for aviation interior and secondary structures

被引:9
作者
Bachmann J. [1 ]
Yi X. [2 ]
Gong H. [3 ]
Martinez X. [4 ,5 ]
Bugeda G. [4 ,6 ]
Oller S. [4 ,6 ]
Tserpes K. [7 ]
Ramon E. [8 ]
Paris C. [9 ]
Moreira P. [10 ]
Fang Z. [11 ]
Li Y. [12 ]
Liu Y. [13 ]
Liu X. [14 ]
Xian G. [15 ]
Tong J. [12 ]
Wei J. [13 ]
Zhang X. [16 ]
Zhu J. [14 ]
Ma S. [14 ]
Yu T. [12 ]
机构
[1] Institute of Composite Structures and Adaptive Systems, DLR-Deutsches Zentrum für Luft- und Raumfahrt e.V. (German Aerospace Centre), Brunswick
[2] AVIC Composite Corporation Ltd. (ACC)/Beijing Institute of Aeronautical Materials (BIAM), Beijing
[3] School of Materials, University of Manchester, Manchester
[4] Centre Internacional de Mètodes Numèrics a l’Enginyeria (CIMNE), Barcelona
[5] Department of Nautical Science and Engineering, UPC, Barcelona
[6] Department of Civil and Environmental Engineering, UPC, Barcelona
[7] Laboratory of Technology and Strength of Materials, University of Patras, Patras
[8] LEITAT Technological Center, Barcelona
[9] Airbus Group Innovations, Suresnes
[10] INEGI Institute of Science and Innovation in Mechanical and Industrial Engineering, Porto
[11] Zhejiang University, Hangzhou
[12] Tongji University, Shanghai
[13] Beijing Institute of Aeronautical Materials, Beijing
[14] Ningbo Institute of Materials and Engineering, CAS, Ningbo
[15] Harbin Institute of Technology, Harbin
[16] ACC (Beijing) Sci. and Technol. Co. Ltd, Beijing
基金
欧盟地平线“2020”;
关键词
Aviation; Bio-fibre; Bio-resin; Eco-composite; Hybrid; Interior; Recycling; Sandwich; Secondary structure;
D O I
10.1007/s13272-018-0298-z
中图分类号
学科分类号
摘要
Today, mainly man-made materials such as carbon and glass fibres are used to produce composite parts in aviation. Renewable materials such as natural fibres or bio-sourced resin systems have not found their way into aviation, yet. The project ECO-COMPASS aims to evaluate the potential applications of ecologically improved composite materials in the aviation sector in an international collaboration of Chinese and European partners. Natural fibres such as flax and ramie will be used for different types of reinforcements and sandwich cores. Furthermore, the bio-based epoxy resins to substitute bisphenol-A based epoxy resins in secondary structures are under investigation. Adapted material protection technologies to reduce environmental influence and to improve fire resistance are needed to fulfil the demanding safety requirements in aviation. Modelling and simulation of chosen eco-composites aims for an optimized use of materials while a life cycle assessment aims to prove the ecological advantages compared to synthetic state-of-the-art materials. In this paper, the status of selected ecologically improved materials will be presented with an outlook for potential application in interior and secondary structures. © 2018, The Author(s).
引用
收藏
页码:533 / 543
页数:10
相关论文
共 51 条
[1]  
Airbus Technical Magazine, (2013)
[2]  
Bachmann J., Fischer H., Bioharze und flammgeschützte Naturfasern: Nachhaltige Materialien für das Flugzeuginterieur? 2. AVK-Fachtagung „Flammschutz bei Composites-Anwendungen“, (2013)
[3]  
Bachmann J., Michelis B., Verbesserung der Brandeigenschaften von NFK im Hinblick auf den Luftfahrt-Kabineneinsatz, Hanser Industrietag: Naturfaserverstärkte Und Andere Innovative Verbundstoffe, 28, (2001)
[4]  
Chen C.Z., Li Y., Yu T., Interlaminar toughening in flax fiber-reinforced composites interleaved with carbon nanotube buckypaper, J. Reinf. Plast. Compos., 33, 20, pp. 1859-1868, (2014)
[5]  
Li Y., Chen C.Z., Xu J., Zhang C.Z., Yuan B.Y., Huang B.Y., Improved mechanical properties of carbon nanotubes coated flax fiber reinforced composites, J. Mater. Sci., 50, 3, pp. 1117-1128, (2015)
[6]  
Shen X., Jia J.J., Chen C.Z., Li Y., Kim J.K., Enhancement of mechanical properties of natural fiber composites via carbon nanotube addition, J. Mater. Sci., 49, 8, pp. 3225-3233, (2014)
[7]  
Yu T., Ren J., Li S.M., Yuan H., Li Y., Effect of fiber surface-treatments on the properties of poly(lactic acid)/ramie composites, Compos. A, 41, pp. 499-505, (2010)
[8]  
Li Y., Hu C.J., Yu Y.H., Interfacial studies of sisal fiber reinforced high density polyethylene (HDPE) composites, Compos. A, 39, pp. 570-578, (2008)
[9]  
Li Y., Mai Y.W., Interfacial characteristics between sisal fiber and polymeric matrices, J. Adhes., 82, pp. 527-554, (2006)
[10]  
Li Y., Mai Y.W., Ye L., Effects of fiber surface treatment on the fracture-mechanical properties of sisal-fiber composites, Compos. Interfaces, 12, 1, pp. 141-163, (2005)