Thermal Conductivity and Thermal Boundary Resistances of ALD Al2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2}$$\end{document}O3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{3}$$\end{document} Films on Si and Sapphire

被引:0
作者
Seung-Min Lee
Wonchul Choi
Junsoo Kim
Taekwang Kim
Jaewoo Lee
Sol Yee Im
Jung Yoon Kwon
Sunae Seo
Mincheol Shin
Seung Eon Moon
机构
[1] ETRI,ICT Materials Research Group
[2] Sejong University,Department of Physics
[3] KAIST,School of Electrical Engineering
关键词
3; method; Al; O; Atomic layer deposition; Thermal boundary resistance; Thermal conductivity;
D O I
10.1007/s10765-017-2308-5
中图分类号
学科分类号
摘要
On Si and sapphire substrates, 6–45 nm thick films of atomic layer-deposited Al2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2}$$\end{document}O3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{3}$$\end{document} were grown. The thermal conductivity of ALD films has been determined from a linear relation between film thickness and thermal resistance measured by the 3ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document} method. ALD films on Si and sapphire showed almost same thermal conductivity in the temperature range of 50–350 K. Residual thermal resistance was also obtained by extrapolation of the linear fit and was modeled as a sum of the thermal boundary resistances at heater–film and film–substrate interfaces. The total thermal resistance addenda for films on sapphire was close to independently measured thermal boundary resistance of heater–sapphire interface. From the result, it was deduced that the thermal boundary resistance at ALD Al2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2}$$\end{document}O3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{3}$$\end{document}–sapphire interface was much lower than that of heater–film. By contrast, the films on Si showed significantly larger thermal boundary resistance than films on sapphire. Data of <30\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$< 30$$\end{document} nm films on Si were excluded because an AC coupling of electrical heating voltage to semiconductive Si complicated the relation between 3ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document} voltage and temperature.
引用
收藏
相关论文
共 50 条
[1]  
Ott AW(1997)undefined Thin Solid Films 292 135-818
[2]  
Klaus JW(2003)undefined Chem. Mater. 15 1020-808
[3]  
Johnson JM(2004)undefined Chem. Mater. 16 639-5786
[4]  
George SM(2003)undefined J. Appl. Phys. 93 793-3764
[5]  
Elam JW(2014)undefined Appl. Phys. Rev. 1 011305-257
[6]  
George SM(2015)undefined Phys. Rev. B 91 115414-2595
[7]  
Groner MD(1990)undefined Rev. Sci. Instrum. 61 802-2147
[8]  
Fabreguette FH(1986)undefined J. Phys. D: Appl. Phys. 19 727-75
[9]  
Elam JW(1998)undefined J. Appl. Phys. 83 5783-163
[10]  
George SM(1994)undefined J. Appl. Phys. 75 3761-983