Deep learning reconstruction for contrast-enhanced CT of the upper abdomen: similar image quality with lower radiation dose in direct comparison with iterative reconstruction

被引:0
|
作者
Ju Gang Nam
Jung Hee Hong
Da Som Kim
Jiseon Oh
Jin Mo Goo
机构
[1] Seoul National University Medical Research Center,Department of Radiology, Seoul National University Hospital and College of Medicine, and Institute of Radiation Medicine
[2] Inje University College of Medicine,Department of Radiology, Busan Paik Hospital
[3] Seoul National University College of Medicine,Cancer Research Institute
来源
European Radiology | 2021年 / 31卷
关键词
Deep learning; Multidetector computed tomography; Computer-assisted image processing; Radiation dosage; Image enhancement;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:5533 / 5543
页数:10
相关论文
共 50 条
  • [1] Deep learning reconstruction for contrast-enhanced CT of the upper abdomen: similar image quality with lower radiation dose in direct comparison with iterative reconstruction
    Nam, Ju Gang
    Hong, Jung Hee
    Kim, Da Som
    Oh, Jiseon
    Goo, Jin Mo
    EUROPEAN RADIOLOGY, 2021, 31 (08) : 5533 - 5543
  • [2] Deep learning reconstruction allows low-dose imaging while maintaining image quality: comparison of deep learning reconstruction and hybrid iterative reconstruction in contrast-enhanced abdominal CT
    Tamura, Akio
    Mukaida, Eisuke
    Ota, Yoshitaka
    Nakamura, Iku
    Arakita, Kazumasa
    Yoshioka, Kunihiro
    QUANTITATIVE IMAGING IN MEDICINE AND SURGERY, 2022, 12 (05) : 2977 - 2984
  • [3] Deep learning image reconstruction for improving image quality of contrast-enhanced dual-energy CT in abdomen
    Sato, Mineka
    Ichikawa, Yasutaka
    Domae, Kensuke
    Yoshikawa, Kazuya
    Kanii, Yoshinori
    Yamazaki, Akio
    Nagasawa, Naoki
    Nagata, Motonori
    Ishida, Masaki
    Sakuma, Hajime
    EUROPEAN RADIOLOGY, 2022, 32 (08) : 5499 - 5507
  • [4] Deep learning image reconstruction for improving image quality of contrast-enhanced dual-energy CT in abdomen
    Mineka Sato
    Yasutaka Ichikawa
    Kensuke Domae
    Kazuya Yoshikawa
    Yoshinori Kanii
    Akio Yamazaki
    Naoki Nagasawa
    Motonori Nagata
    Masaki Ishida
    Hajime Sakuma
    European Radiology, 2022, 32 : 5499 - 5507
  • [5] Comparison of Radiation Dose, Image Quality, and Diagnostic Performance between Hybrid Iterative Reconstruction and Deep Learning Reconstruction for CT Enterography of IBD
    He, W.
    Xu, P.
    Xu, R. L.
    Li, X. H.
    JOURNAL OF CROHNS & COLITIS, 2024, 18 : I744 - I744
  • [6] Impact of Model-Based Iterative Reconstruction on Image Quality of Contrast-Enhanced Neck CT
    Gaddikeri, S.
    Andre, J. B.
    Benjert, J.
    Hippe, D. S.
    Anzai, Y.
    AMERICAN JOURNAL OF NEURORADIOLOGY, 2015, 36 (02) : 391 - 396
  • [7] Iterative reconstruction vs deep learning image reconstruction: comparison of image quality and diagnostic accuracy of arterial stenosis in low--dose lower extremity CT angiography
    Qu, Tingting
    Guo, Yinxia
    Li, Jianying
    Cao, Le
    Li, Yanan
    Chen, Lihong
    Sun, Jingtao
    Lu, Xueni
    Guo, Jianxin
    BRITISH JOURNAL OF RADIOLOGY, 2022, 95 (1140):
  • [8] Iterative Reconstruction for Head CT: Effects on Radiation Dose and Image Quality
    Rivers-Bowerman, Michael D.
    Shankar, Jai Jai Shiva
    CANADIAN JOURNAL OF NEUROLOGICAL SCIENCES, 2014, 41 (05) : 620 - 625
  • [9] Deep-learning-based image reconstruction in dynamic contrast-enhanced abdominal CT: image quality and lesion detection among reconstruction strength levels
    Kaga, T.
    Noda, Y.
    Fujimoto, K.
    Suto, T.
    Kawai, N.
    Miyoshi, T.
    Hyodo, F.
    Matsuo, M.
    CLINICAL RADIOLOGY, 2021, 76 (09) : 710.e15 - 710.e24
  • [10] Image quality assessment of artificial intelligence iterative reconstruction for low dose unenhanced abdomen: comparison with hybrid iterative reconstruction
    Qi, Hui
    Cui, Dingye
    Xu, Shijie
    Li, Wei
    Zeng, Qingshi
    ABDOMINAL RADIOLOGY, 2024,