Nuciferine modulates the gut microbiota and prevents obesity in high-fat diet-fed rats

被引:0
|
作者
Yu Wang
Weifan Yao
Bo Li
Shiyun Qian
Binbin Wei
Shiqiang Gong
Jing Wang
Mingyan Liu
Minjie Wei
机构
[1] China Medical University,School of Pharmacy
[2] China Medical University,Liaoning Key Laboratory of Molecular Targeted Anti
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Gut microbiota dysbiosis has a significant role in the pathogenesis of metabolic diseases, including obesity. Nuciferine (NUC) is a main bioactive component in the lotus leaf that has been used as food in China since ancient times. Here, we examined whether the anti-obesity effects of NUC are related to modulations in the gut microbiota. Using an obese rat model fed a HFD for 8 weeks, we show that NUC supplementation of HFD rats prevents weight gain, reduces fat accumulation, and ameliorates lipid metabolic disorders. Furthermore, 16S rRNA gene sequencing of the fecal microbiota suggested that NUC changed the diversity and composition of the gut microbiota in HFD-fed rats. In particular, NUC decreased the ratio of the phyla Firmicutes/Bacteroidetes, the relative abundance of the LPS-producing genus Desulfovibrio and bacteria involved in lipid metabolism, whereas it increased the relative abundance of SCFA-producing bacteria in HFD-fed rats. Predicted functional analysis of microbial communities showed that NUC modified genes involved in LPS biosynthesis and lipid metabolism. In addition, serum metabolomics analysis revealed that NUC effectively improved HFD-induced disorders of endogenous metabolism, especially lipid metabolism. Notably, NUC promoted SCFA production and enhanced intestinal integrity, leading to lower blood endotoxemia to reduce inflammation in HFD-fed rats. Together, the anti-obesity effects of NUC may be related to modulations in the composition and potential function of gut microbiota, improvement in intestinal barrier integrity and prevention of chronic low-grade inflammation. This research may provide support for the application of NUC in the prevention and treatment of obesity.
引用
收藏
页码:1959 / 1975
页数:16
相关论文
共 50 条
  • [21] Junshanyinzhen tea extract prevents obesity by regulating gut microbiota and metabolic endotoxemia in high-fat diet fed rats
    Ouyang, Jian
    Li, Xiuping
    Liu, Changwei
    Lu, Danmin
    Ouyang, Jie
    Zhou, Fang
    Liu, Qi
    Huang, Jianan
    Liu, Zhonghua
    FOOD SCIENCE AND HUMAN WELLNESS, 2024, 13 (04) : 2036 - 2047
  • [22] Junshanyinzhen tea extract prevents obesity by regulating gut microbiota and metabolic endotoxemia in high-fat diet fed rats
    Jian Ouyang
    Xiuping Li
    Changwei Liu
    Danmin Lu
    Jie Ouyang
    Fang Zhou
    Qi Liu
    Jianan Huang
    Zhonghua Liu
    Food Science and Human Wellness, 2024, 13 (04) : 2036 - 2047
  • [23] Empagliflozin-induced gut microbiota alternation reduces obesity in high-fat diet-fed mice
    Shi, J.
    Qiu, H.
    Hou, N.
    Liu, Y.
    Han, F.
    Kan, C.
    Sun, X.
    DIABETOLOGIA, 2021, 64 (SUPPL 1) : 27 - 28
  • [24] Lactobacillus plantarum Alleviates Obesity by Altering the Composition of the Gut Microbiota in High-Fat Diet-Fed Mice
    Ma, Yong
    Fei, Yanquan
    Han, Xuebing
    Liu, Gang
    Fang, Jun
    FRONTIERS IN NUTRITION, 2022, 9
  • [25] Kaempferol reduces obesity, prevents intestinal inflammation, and modulates gut microbiota in high-fat diet mice
    Bian, Yifei
    Lei, Jiaqi
    Zhong, Jia
    Wang, Bo
    Wan, Yan
    Li, Jinxin
    Liao, Chaoyong
    He, Yang
    Liu, Zhongjie
    Ito, Koichi
    Zhang, Bingkun
    JOURNAL OF NUTRITIONAL BIOCHEMISTRY, 2022, 99
  • [26] Green tea leaf powder prevents dyslipidemia in high-fat diet-fed mice by modulating gut microbiota
    Wang, Jin
    Li, Ping
    Liu, Shuang
    Zhang, Bowei
    Hu, Yaozhong
    Ma, Hui
    Wang, Shuo
    FOOD & NUTRITION RESEARCH, 2020, 64
  • [27] Laminarin favorably modulates gut microbiota in mice fed a high-fat diet
    Nguyen, Son G.
    Kim, Jungman
    Guevarra, Robin B.
    Lee, Ji-Hoon
    Kim, Eungpil
    Kim, Su-il
    Unno, Tatsuya
    FOOD & FUNCTION, 2016, 7 (10) : 4193 - 4201
  • [28] Tibetan highland barley fiber improves obesity and regulates gut microbiota in high-fat diet-fed mice
    Gan, Linyao
    Han, Jing
    Li, Chenyao
    Tang, Jing
    Wang, Xuebing
    Ma, Yue
    Chen, Yefu
    Xiao, Dongguang
    Guo, Xuewu
    FOOD BIOSCIENCE, 2023, 53
  • [29] Brevibacillus laterosporus BL1, a promising probiotic, prevents obesity and modulates gut microbiota in mice fed a high-fat diet
    Weng, Guangying
    Huang, Jian
    Ma, Xianyong
    Song, Min
    Yin, Yulong
    Deng, Dun
    Deng, Jinping
    FRONTIERS IN NUTRITION, 2022, 9
  • [30] Supplementation With Lycium barbarum Polysaccharides Reduce Obesity in High-Fat Diet-Fed Mice by Modulation of Gut Microbiota
    Yang, Mei
    Yin, Yexin
    Wang, Fang
    Zhang, Haihan
    Ma, Xiaokang
    Yin, Yulong
    Tan, Bie
    Chen, Jiashun
    FRONTIERS IN MICROBIOLOGY, 2021, 12