On the Stability of a Hyperbolic Fractional Partial Differential Equation

被引:0
|
作者
J. Vanterler da C. Sousa
E. Capelas de Oliveira
机构
[1] IMECC-UNICAMP,Department of Applied Mathematics
关键词
Hyperbolic fractional partial differential equation; -Riemann–Liouville fractional partial integral; -Hilfer fractional partial derivative; Ulam–Hyers stability; Ulam–Hyers–Rassias stability;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, the ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi $$\end{document}-Riemann–Liouville fractional partial integral and the ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi $$\end{document}-Hilfer fractional partial derivative are introduced and some of its particular cases are recovered. Using the Gronwall inequality and these results, we investigate the Ulam–Hyers and Ulam–Hyers–Rassias stabilities of the solutions of a fractional partial differential equation of hyperbolic type in a Banach space (B,·)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({\mathbb {B}}, \left| \cdot \right| )$$\end{document}, real or complex. Finally, we present an example in order to elucidate the results obtained.
引用
收藏
页码:31 / 52
页数:21
相关论文
共 50 条
  • [31] OSCILLATORY BEHAVIOR OF A FRACTIONAL PARTIAL DIFFERENTIAL EQUATION
    Wang, Jiangfeng
    Meng, Fanwei
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2018, 8 (03): : 1011 - 1020
  • [32] On solution of fractional partial differential equation by the weighted fractional operator
    Bayrak, Mine Aylin
    Demir, Ali
    Ozbilge, Ebru
    ALEXANDRIA ENGINEERING JOURNAL, 2020, 59 (06) : 4805 - 4819
  • [33] Convergence and stability of spectral collocation method for hyperbolic partial differential equation with piecewise continuous arguments
    Yongtang Chen
    Qi Wang
    Computational and Applied Mathematics, 2022, 41
  • [34] Convergence and stability of spectral collocation method for hyperbolic partial differential equation with piecewise continuous arguments
    Chen, Yongtang
    Wang, Qi
    COMPUTATIONAL & APPLIED MATHEMATICS, 2022, 41 (08):
  • [35] Existence and Continuous Dependence for Fractional Partial Hyperbolic Differential Equations
    Dong, Qixiang
    Wu, Guangxian
    Zhu, Lanping
    JOURNAL OF FUNCTION SPACES, 2015, 2015
  • [36] STABILITY OF FRACTIONAL DIFFERENTIAL EQUATION WITH BOUNDARY CONDITIONS
    Rajan, S.
    Muniyappan, P.
    Park, Choonkil
    Yun, Sungsik
    Lee, Jung Rye
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2017, 23 (04) : 750 - 757
  • [37] ASYMPTOTIC BEHAVIORS OF SOLUTION TO PARTIAL DIFFERENTIAL EQUATION WITH CAPUTO-HADAMARD DERIVATIVE AND FRACTIONAL LAPLACIAN: HYPERBOLIC CASE
    Li, Changpin
    Li, Zhiqiang
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2021, 14 (10): : 3659 - 3683
  • [38] Solving a Nonlinear Fractional Stochastic Partial Differential Equation with Fractional Noise
    Liu, Junfeng
    Yan, Litan
    JOURNAL OF THEORETICAL PROBABILITY, 2016, 29 (01) : 307 - 347
  • [39] Solving a Nonlinear Fractional Stochastic Partial Differential Equation with Fractional Noise
    Junfeng Liu
    Litan Yan
    Journal of Theoretical Probability, 2016, 29 : 307 - 347
  • [40] A hyperbolic partial differential equation model for filtering turbulent flows
    Kareem, Waleed Abdel
    Izawa, Seiichiro
    Klein, Markus
    Fukunishi, Yu
    COMPUTERS & FLUIDS, 2019, 190 : 156 - 167