On the Stability of a Hyperbolic Fractional Partial Differential Equation

被引:0
|
作者
J. Vanterler da C. Sousa
E. Capelas de Oliveira
机构
[1] IMECC-UNICAMP,Department of Applied Mathematics
关键词
Hyperbolic fractional partial differential equation; -Riemann–Liouville fractional partial integral; -Hilfer fractional partial derivative; Ulam–Hyers stability; Ulam–Hyers–Rassias stability;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, the ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi $$\end{document}-Riemann–Liouville fractional partial integral and the ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi $$\end{document}-Hilfer fractional partial derivative are introduced and some of its particular cases are recovered. Using the Gronwall inequality and these results, we investigate the Ulam–Hyers and Ulam–Hyers–Rassias stabilities of the solutions of a fractional partial differential equation of hyperbolic type in a Banach space (B,·)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({\mathbb {B}}, \left| \cdot \right| )$$\end{document}, real or complex. Finally, we present an example in order to elucidate the results obtained.
引用
收藏
页码:31 / 52
页数:21
相关论文
共 50 条