Integral self-affine tiles in ℝn part II: Lattice tilings

被引:0
作者
Jeffrey C. Lagarias
Yang Wang
机构
[1] AT&T Labs-Research,School of Mathematics
[2] Georgia Institute of Technology,undefined
来源
Journal of Fourier Analysis and Applications | 1997年 / 3卷
关键词
52C22; 42B99; digit set; self-affine tile; lattice tiling; quasi-product form; wavelet;
D O I
暂无
中图分类号
学科分类号
摘要
Let A be an expanding n×n integer matrix with |det(A)|=m. Astandard digit set D for A is any complete set of coset representatives forℤn/A(ℤn). Associated to a given D is a setT (A, D), which is the attractor of an affine iterated function system, satisfyingT=∪d∈D(T+d). It is known thatT (A, D) tilesℝn by some subset ofℤn. This paper proves that every standard digit set D gives a setT (A, D) that tilesℝn with a lattice tiling.
引用
收藏
页码:83 / 102
页数:19
相关论文
共 24 条
[1]  
Bandt C.(1991)Self-similar sets 5. Integer matrices and fractal tilings of Proc. Amer. Math Soc. 112 549-562
[2]  
Cohen A.(1990)Ondelettes, analyses multirésolutions et filtres miriors em quadrature Ann. Inst. Poincaré 7 439-459
[3]  
Conze J. P.(1990)Fonctions harmoniques pour un operateur de transition et applications Bull. Soc. Math., France 118 273-310
[4]  
Raugi A.(1991)Box-spline tilings Amer. Math. Monthly 98 793-802
[5]  
De Boor C.(1994)Orthogonality criteria for compactly supported scaling functions Appl. Comp. Harmonic Anal. 1 242-245
[6]  
Höllig K.(1994)Self-similar lattice tilings J. Fourier Anal. 1 131-170
[7]  
Gröchenig K.(1992)Multiresolution analysis, Haar bases, and self-similar tilings IEEE Trans. Inform. Theory 38 558-568
[8]  
Gröchenig K.(1981)Fractals and self-similarity Indiana Univ. Math. J. 30 713-747
[9]  
Haas A.(1992)Self-replicating tilings Contemporary Math. 135 239-264
[10]  
Gröchenig K.(1996)Self-affine tiles in Adv. Math. 121 21-49