Thermomagnetic Effect in the Quantum Hall System

被引:0
作者
Ryoen Shirasaki
Akira Endo
Naomichi Hatano
Hiroaki Nakamura
机构
[1] Yokohama National University,Department of Physics
[2] University of Tokyo,Institute for Solid State Physics
[3] University of Tokyo,Institute of Industrial Science
[4] Fundamental Physics Simulation Research Division,undefined
[5] National Institute for Fusion Science,undefined
来源
Journal of Electronic Materials | 2012年 / 41卷
关键词
Thermomagnetic effect; quantum Hall effect; two-dimensional electron system; thermopower; Seebeck effect; Nernst effect; thermoconductivity; impurity; electron scattering time;
D O I
暂无
中图分类号
学科分类号
摘要
We calculate the Seebeck Sxx and Nernst Syx components of the thermopower tensor Ŝ in the quantum Hall system, using analytical formulas of the conductivity tensor \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{\sigma}$$\end{document} that we deduced in a previous publication. The results basically reproduce the magnetic field dependence of experimentally observed behavior of Sxx and Syx. With the aid of the Mott relation valid at low temperatures, we can further simplify the expressions and obtain analytical formulas for Sxx and Syx. The Mott relation predicts that both Sxx and Syx grow linearly with temperature T. To examine the range of validity of the formula based on the Mott relation, we investigate the temperature dependence of the height of the |Sxx| peak at the first excited (N = 1) Landau level for various values of the impurity scattering time τq. The results calculated with the more general integral formulas are seen to deviate from the linear T dependence and asymptotically approach the universal value (2ln 2/3)(kB/e) above \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T \simeq \hbar / (2 \tau_{\rm q} k_{\rm B}).$$\end{document}
引用
收藏
页码:1540 / 1545
页数:5
相关论文
共 36 条
[1]  
Klitzing K.v.(1980)undefined Phys. Rev. Lett. 45 494-undefined
[2]  
Dorda G.(1982)undefined J. Phys. C 15 L1147-undefined
[3]  
Pepper M.(1984)undefined Phys. Rev. B 29 1939-undefined
[4]  
Girvin S.M.(1999)undefined Semicond. Sci. Technol. 14 R1-undefined
[5]  
Jonson M.(2009)undefined Phys. Rev. B 80 081413(R)-undefined
[6]  
Jonson M.(2010)undefined Phys. Rev. Lett. 104 076804-undefined
[7]  
Girvin S.M.(2010)undefined Phys. Rev. Lett. 104 066601-undefined
[8]  
Fletcher R.(2010)undefined Physica E 42 1030-undefined
[9]  
Checkelsky J.G.(2009)undefined Phys. Rev. B 79 115317-undefined
[10]  
Ong N.P.(2010)undefined Phys. Rev. B 81 245319-undefined